Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Measure (mathematics) di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan.
(Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel)
Keseluruhan atau sebagian dari artikel ini membutuhkan perhatian dari ahli subyek terkait. Jika Anda adalah ahli yang dapat membantu, silakan membantu perbaiki kualitas artikel ini.
Dalam matematika, ukuran adalah pemetaan yang menghubungkan himpunan bagian tertentu dengan suatu nilai, yang dianggap sebagai ukuran dari himpunan bagian tersebut. Ukuran dapat dipahami sebagai perumiman dari konsep seperti "panjang", "luas" dan "volume". Konsep ukuran ini penting untuk dapat dengan benar mendefinisikan integral dari suatu fungsi secara umum. Ukuran adalah konsep yang penting dalam analisis dan teori peluang. Teori ukuran adalah cabang analisis real yang menginvestigasi aljabar σ, ukuran, fungsi ukuran dan integral.
Gagasan mengenai teori ukuran sudah ada semenjak zaman Yunani kuno, ketika Archimeder hendak menghitung nilai eksak luas lingkaran. Tetapi teori ukuran sendiri baru berkembang di abad ke-20. Perintis dari teori ukuran adalah Henri Lebesgue, Georg Cantor, Émile Borel, Constantin Carathéodory and Alfred Haar. Henri Lebesgue mengembangkan ukuran Lebesgue dan integral Lebesgue dalam . Georg Cantor dan Émile Borel kemudian mengidentifikasi besaran terukur dan besaran Borel. Constantin Carathéodory mendefinisikan dimensi eksternal dan konstruksi Carathéodory. Alfred Haar dikenal untuk ukuran Haar, konsep yang serupa dengan ukuran Lebesgue di grup topologis.
Definisi
Misalkan adalah suatu ruang terukur, dengan suatu himpunan dan suatu aljabar σ pada .
Fungsi disebut sebagai ukuran pada , jika memenuhi sifat-sifat:
Non-negatif: tiada himpunan yang berukuran negatif:
Aditivitas terhitung atau aditivitas-σ: jika , , , ... adalah suatu barisan terhitung dari himpunan saling lepas pasang-demi-pasang yang termuat dalam , maka
Anggota dari disebut himpunan terukur, dan disebut ruang ukuran.
Ukuran Lebesgue di suatu perumuman dari panjang.
Panjang interval atau didefinisikan .
Sekarang misalkan suatu himpunan bagian.
Keluarga interval dikatakan meliputi apabila .
Ukuran luar didefinisikan sebagai
Tepatnya, yang didefinisikan untuk semua himpunan bagian dari bukan ukuran karena itu tidak memenuhi sifat-3 definisi ukuran.
Himpunan dikatakan terukur (atau terukur Lebesgue) apabila untuk setiap terdapat himpunan tertutup dan himpunan terbuka sedemikian sehingga .
Sekarang misalkan adalah keluarga himpunan terukur.
Tepatnya, aljabar sigma dan fungsi yang dibatasi pada ukuran.
Ukuran itu dikenal sebagai Ukuran Lebesgue (di ) dan dilambangkan dengan .
Ukuran penghitungan
Misalnya suatu himpunan dan himpunan kunasa, yakni keluarga semua himpunan bagian dari .
Jelas, aljabar sigma.
Untuk , nilai definisikan sebagai jumlah unsur himpunan .
Fungsi itu dikenal sebagai ukuran penghitungan di .
Fitur
Kaidah perhitungan
Kaidah perhitungan dasar berikut untuk hasil langsung dari definisi :
Aditif hingga: untuk himpunan pemutus dengan gilt .
Subtraktivitas: untuk dengan dan dari .
Monoton: untuk dengan dari .
Untuk dengan himpunan . Dengan prinsip penyertaan dan pengecualian rumus tersebut dapat digeneralisasikan dalam kasus ukuran hingga untuk penyatuan dan perpotongan dari banyak himpunan terbatas.
Misalkan produsen dari , hal itu berlaku dan untuk ist , dengan sifat berikut:
Untuk dengan , dengan , dan
Urutan dari himpunan dengan dan für alle .
Kemudian .
Untuk dimensi dengan kondisi 2 otomatis. Secara khusus, dua ukuran probabilitas adalah sama jika keduanya generator dari rata yang stabil dari aljabar.
Untuk tujuan tertentu, "ukuran" yang nilainya tidak terbatas pada riil non-negatif atau tak terhingga. Misalnya, aditif terhitung fungsi set dengan nilai dalam bilangan real (bertanda) disebut ukuran tanda, sedangkan fungsi seperti itu dengan nilai-nilai dalam bilangan kompleks disebut ukuran kompleks. Pengukuran yang mengambil nilai dalam ruang Banach telah dipelajari secara ekstensif.[1] Ukuran dari nilai dalam himpunan proyeksi self-adjoint pada ruang Hilbert disebut ukuran nilai proyeksi; digunakan dalam analisis fungsional untuk teorema spektral. Jika untuk membedakan ukuran biasa yang mengambil nilai non-negatif dari generalisasi, istilah digunakan ukuran positif. Pengukuran positif ditutup di bawah kombinasi kerucut tetapi tidak umum kombinasi linear, sedangkan pengukuran bertanda tangan adalah penutupan linier dari pengukuran positif.
Generalisasi lain adalah ukuran aditif hingga, juga dikenal sebagai isi. Ini sama dengan ukuran kecuali bahwa alih-alih membutuhkan aditifitas yang dapat dihitung, kita hanya memerlukan aditifitas yang terbatas. Secara historis, definisi ini digunakan pertama kali. Ternyata secara umum, ukuran aditif hingga terkait dengan pengertian seperti limit Banach, rangkap L∞ dan pemadatan Stone–Čech. Terkait dalam satu atau lain cara dengan aksioma pilihan. Masalah teknis tertentu di teori ukuran geometris; ini adalah teori ukuran Banach.
Muatan adalah generalisasi di kedua arah: adalah ukuran bertanda tangan aditif hingga.
R. M. Dudley, 2002. Real Analysis and Probability. Cambridge University Press.
Folland, Gerald B. (1999), Real Analysis: Modern Techniques and Their Applications, John Wiley and Sons, ISBN0471317160 Second edition.
Federer, Herbert. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969 xiv+676 pp.
M. E. Munroe, 1953. Introduction to Measure and Integration. Addison Wesley.
K. P. S. Bhaskara Rao and M. Bhaskara Rao (1983), Theory of Charges: A Study of Finitely Additive Measures, London: Academic Press, hlm. x + 315, ISBN0-12-095780-9
Shilov, G. E., and Gurevich, B. L., 1978. Integral, Measure, and Derivative: A Unified Approach, Richard A. Silverman, trans. Dover Publications. ISBN0-486-63519-8. Emphasizes the Daniell integral.