Share to: share facebook share twitter share wa share telegram print page

APX

In computational complexity theory, the class APX (an abbreviation of "approximable") is the set of NP optimization problems that allow polynomial-time approximation algorithms with approximation ratio bounded by a constant (or constant-factor approximation algorithms for short). In simple terms, problems in this class have efficient algorithms that can find an answer within some fixed multiplicative factor of the optimal answer.

An approximation algorithm is called an -approximation algorithm for input size if it can be proven that the solution that the algorithm finds is at most a multiplicative factor of times worse than the optimal solution. Here, is called the approximation ratio. Problems in APX are those with algorithms for which the approximation ratio is a constant . The approximation ratio is conventionally stated greater than 1. In the case of minimization problems, is the found solution's score divided by the optimum solution's score, while for maximization problems the reverse is the case. For maximization problems, where an inferior solution has a smaller score, is sometimes stated as less than 1; in such cases, the reciprocal of is the ratio of the score of the found solution to the score of the optimum solution.

A problem is said to have a polynomial-time approximation scheme (PTAS) if for every multiplicative factor of the optimum worse than 1 there is a polynomial-time algorithm to solve the problem to within that factor. Unless P = NP there exist problems that are in APX but without a PTAS, so the class of problems with a PTAS is strictly contained in APX. One example of a problem with a PTAS is the bin packing problem.

APX-hardness and APX-completeness

A problem is said to be APX-hard if there is a PTAS reduction from every problem in APX to that problem, and to be APX-complete if the problem is APX-hard and also in APX. As a consequence of P ≠ NP ⇒ PTAS ≠ APX, if P ≠ NP is assumed, no APX-hard problem has a PTAS. In practice, reducing one problem to another to demonstrate APX-completeness is often done using other reduction schemes, such as L-reductions, which imply PTAS reductions.

Examples

One of the simplest APX-complete problems is MAX-3SAT-3, a variation of the Boolean satisfiability problem. In this problem, we have a Boolean formula in conjunctive normal form where each variable appears at most 3 times, and we wish to know the maximum number of clauses that can be simultaneously satisfied by a single assignment of true/false values to the variables.

Other APX-complete problems include:

PTAS

PTAS (polynomial time approximation scheme) consists of problems that can be approximated to within any constant factor besides 1 in time that is polynomial to the input size, but the polynomial depends on such factor. This class is a subset of APX.

APX-intermediate

Unless P = NP, there exist problems in APX that are neither in PTAS nor APX-complete. Such problems can be thought of as having a hardness between PTAS problems and APX-complete problems, and may be called APX-intermediate. The bin packing problem is thought to be APX-intermediate. Despite not having a known PTAS, the bin packing problem has several "asymptotic PTAS" algorithms, which behave like a PTAS when the optimum solution is large, so intuitively it may be easier than problems that are APX-hard.

One other example of a potentially APX-intermediate problem is min edge coloring.

f(n)-APX

One can also define a family of complexity classes -APX, where -APX contains problems with a polynomial time approximation algorithm with a approximation ratio. One can analogously define -APX-complete classes; some such classes contain well-known optimization problems. Log-APX-completeness and poly-APX-completeness are defined in terms of AP-reductions rather than PTAS-reductions; this is because PTAS-reductions are not strong enough to preserve membership in Log-APX and Poly-APX, even though they suffice for APX.

Log-APX-complete, consisting of the hardest problems that can be approximated efficiently to within a factor logarithmic in the input size, includes min dominating set when degree is unbounded.

Poly-APX-complete, consisting of the hardest problems that can be approximated efficiently to within a factor polynomial in the input size, includes max independent set in the general case.

There also exist problems that are exp-APX-complete, where the approximation ratio is exponential in the input size. This may occur when the approximation is dependent on the value of numbers within the problem instance; these numbers may be expressed in space logarithmic in their value, hence the exponential factor.

See also

References

Read other articles:

Cet article concerne l'édition 2013 du pay-per-view Elimination Chamber. Pour toutes les autres éditions, voir Elimination Chamber. Elimination ChamberLogo officiel d'Elimination Chamber 2013Main event The Rock contre CM PunkThème musical The Crazy Ones de Stellar RevivalInformationsFédération WWESponsor G.I. Joe: Retaliation WWE Power SlammersDate 17 février 2013Spectateurs 13 000 personnesTéléspectacteurs 15 669 personnesLieu New Orleans ArenaVille(s) La Nouvelle-Orléans, Louis...

 

Isla Portal Île Portal Ubicación geográficaCoordenadas 5°25′28″N 54°05′05″O / 5.42432, -54.0846Ubicación administrativaPaís  FranciaDivisión Saint-Laurent-du-MaroniDepartamento  Guayana FrancesaCaracterísticas generalesSuperficie 27Punto más alto ()PoblaciónPoblación 124 hab hab.Mapa de localización Isla Portal [editar datos en Wikidata] La Isla Portal[1]​ (en francés: Île Portal) es una isla de la Guayana Francesa en el mu...

 

Combination drug Ethinylestradiol/cyproterone acetateEthinylestradiol (top) andcyproterone acetate (bottom)Combination ofEthinylestradiolEstrogenCyproterone acetateProgestogen; AntiandrogenClinical dataTrade namesDiane, Diane-35, othersOther namesEE/CPA; Co-cyprindiol; SHB 209 AB; SHB 209 AE; SH-81041Routes ofadministrationBy mouthDrug classEstrogen; Progestogen; AntiandrogenATC codeG03HB01 (WHO) Legal statusLegal status US: ℞-only EU: Rx-only[1] IdentifiersCAS N...

Pemberontakan Komunis di SarawakBagian dari Konfrontasi Indonesia–Malaysia dan Perang DinginPara prajurit bersenjata menjaga sekelompok penduduk desa keturunan Tionghoa yang sedang memakai permandian komunal pada 1965 dalam rangka agar mereka tidak ikut serta dengan gerilyawan Komunis dan melindungi kawasan tersebut dari bala bantuan Indonesia.TanggalDesember 1962–3 November 1989[2][7]LokasiSarawak, MalaysiaHasil Deklarasi Damai Sri Aman 1973.[8][9] Pembuba...

 

Een elektrische verticuteermachine Onderaanzicht van dezelfde machine Een verticuteermachine of verticulator is een apparaat waarmee dood gras (gazonvilt) en mos verwijderd kan worden uit een gazon. Verticuteren Bij het maaien van gras blijft er altijd maaisel achter, het wordt uiteindelijk een soort viltlaag. Deze laag dood gras wordt in de loop van tijd steeds dikker, en wordt harder als men erop loopt. Hierdoor kan er geen lucht meer bij de wortels komen, waardoor het gras niet meer goed g...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) روجر إيبرهارد معلومات شخصية الميلاد 28 أبريل 1984 (39 سنة)[1]  زيورخ  مواطنة سويسرا  الحياة العملية المهنة مصور،  وناشر  اللغات الألمانية،  وال�...

Fontäne und Wasserbecken des Artesischen Brunnen am Albertplatz Der Artesische Brunnen am Dresdner Albertplatz ist ein räumlich getrenntes Brunnen-Ensemble bestehend aus einem Brunnenhaus, einem Trinkbrunnen und einer Fontäne mit Wasserbecken. Der artesische Brunnen wurde von 1832 bis 1836 nordwestlich des Albertplatzes durch Freiberger Bergleute erbohrt, um die Dresdner Neustadt mit sauberem Wasser zu versorgen. Das Wasser aus dem 243,25 Meter tiefen Brunnen tritt durch natürlichen ...

 

БайбуртBayburt Байбуртський замокБайбуртський замок Основні дані 40°15′16″ пн. ш. 40°13′33″ сх. д. / 40.25463888891677300° пн. ш. 40.22600000002777421° сх. д. / 40.25463888891677300; 40.22600000002777421Координати: 40°15′16″ пн. ш. 40°13′33″ сх. д. / 40.25463888891677300° пн. ш. 4...

 

Пам'ятник Героям Небесної Сотні Тип пам'ятникКраїна  Україна : ISO3166-1 alpha-3:UKR; ISO3166-1 цифровий:804; Розташування Хмельницький, перехрестя вулиць Соборної та Героїв МайдануСкульптор Микола Мазур, Роман АлбулВстановлено 2017 Пам'ятник Героям Небесної Сотні — пам'ятн

REDD ist eine Weiterleitung auf diesen Artikel. Zu weiteren Bedeutungen siehe Redd. Diese Satellitenaufnahme zeigt Thailand. Braune Flächen zeigen das Fehlen von Wald an. REDD+ (Reducing Emissions from Deforestation and Forest Degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries, dt. etwa „Verringerung von Emissionen aus Entwaldung und Waldschädigung sowie die Rolle des Waldschutzes, der nachhaltigen Wa...

 

American silversmith and Patriot in the American Revolution This article is about the 18th-century American activist and artisan. For other uses, see Paul Revere (disambiguation). Not to be confused with Paul Rivière. Paul RevereJohn Singleton Copley, Portrait of Paul Revere. c. 1768–1770, Museum of Fine Arts, BostonBorn(1735-01-01)January 1, 1735(O.S.: December 21, 1734)North End, Boston, Massachusetts Bay, British AmericaDiedMay 10, 1818(1818-05-10) (aged 83)Boston, Massachusetts, U...

 

Overview of Nigeria's religion share National Church of NigeriaAbuja National MosqueThe Church and the Mosque face each other across Independence Avenue and Constitution Avenue in the national capital, Abuja[1] Religion in Nigeria (known to be the most populous African country with a population of over 225 million as of 2022) is diverse.[2][3] The country is home to some of the world's largest Christian and Muslim populations, simultaneously.[4] Reliable recent...

Aceria TaksonomiKerajaanAnimaliaFilumArthropodaKelasArachnidaOrdoTrombidiformesFamiliEriophyidaeGenusAceria Keifer, 1944 Spesies900+lbs Aceria adalah sebuah genus tungau yang berasal dari keluarga Eriophyidae. Hewan kecil tersebut adalah parasit tumbuhan. Terdapat lebih dari 900 spesies dalam genus tersebut.[1] Referensi ^ Magud, Biljana D; Stanisavljević, Ljubiša Ž; Petanović, Radmila U (2017). Morphological variation in different populations of Aceria anthocoptes (Acari: Eriophy...

 

Rafael López Gutiérrez Rafael López Gutiérrez (1855 - Amapala 10 maart 1924), was een Hondurees militair en politicus. Rafael López Gutiérrez was een generaal in Hondurese leger en was lid van de Liberale Partij van Honduras (Partido Liberal de Honduras). Hij was militair gouverneur van de hoofdstad Tegucigalpa en leidde in 1919 een militaire opstand tegen president Francisco Bertrand. Op 9 september 1919 trad Bertrand als president af en vluchtte naar de Verenigde Staten van Amerika. E...

 

Ảnh chụp cảnh đánh bom năm 1965 đã khiến Robbins thiệt mạng. Barbara Annette Robbins (ngày 26 tháng 7 năm 1943[1] – ngày 30 tháng 3 năm 1965) là thư ký người Mỹ làm việc cho Cơ quan Tình báo Trung ương (CIA). Cô bị giết trong một vụ đánh bom xe vào Đại sứ quán Hoa Kỳ tại Sài Gòn. Robbins là nữ nhân viên đầu tiên bị giết trong lịch sử CIA, người phụ nữ Mỹ đầu tiên chết trong chiến tr...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Elsa von Brabant – news · newspapers · books · scholar · JSTOR (July 2021) (Learn how and when to remove th...

 

British Labour politician Apsana BegumMPOfficial portrait, 2019Member of Parliamentfor Poplar and LimehouseIncumbentAssumed office 12 December 2019Preceded byJim FitzpatrickMajority28,904 (47.2%) Personal detailsBorn (1990-05-25) 25 May 1990 (age 33)Shadwell, London, EnglandPolitical partyLabourOther politicalaffiliationsSocialist Campaign Group (2019–present)Spouse Ehtashamul Haque ​ ​(m. 2013; div. 2015)​Alma materQueen Mary Univers...

 

Sneaky Pete KleinowKleinow pada 1970Informasi latar belakangNama lahirPeter E. KleinowNama lainSneaky PeteLahir(1934-08-20)20 Agustus 1934AsalSouth Bend, Indiana, ASMeninggal6 Januari 2007(2007-01-06) (umur 72)Petaluma, California, ASGenreCountry rockPekerjaanMusisiInstrumenGitar pedal bajaArtis terkaitFlying Burrito Brothers dan lainnya Peter E. Sneaky Pete Kleinow (20 Agustus 1934 – 6 Januari 2007) adalah seorang musisi country-rock, penulis lagu dan artis efek khusus f...

Letak Provinsi Maputo di Mozambik Provinsi Maputo merupakan sebuah provinsi di Mozambik. Provinsi ini memiliki luas wilayah 26.058 km². Dengan memiliki jumlah penduduk sebanyak 1.000.000 jiwa (2002). Ibu kotanya ialah Matola. Distrik Distrik Magude Distrik Manhiça Distrik Maracuene Distrik Moamba Distrik Namaacha Distrik Matutuine Distrik Boane Munisipalitas Manhiça Matola Artikel bertopik Afrika ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

哆啦A夢:大雄的宇宙小戰爭ドラえもん のび太の宇宙小戦争基本资料导演芝山努原著藤子·F·不二雄配乐菊池俊輔制片商SHIN-EI动画小學館片长97分鐘产地 日本语言日語上映及发行上映日期 1985年3月16日 1989年8月20日(TVB) 1995年(歷紹行影帶及LD) 1990年代[1]票房11.8億日圓前作与续作前作《大雄的魔界大冒險》续作《大雄與鐵人兵團》 《哆啦A夢:大雄的宇宙小战争�...

 
Kembali kehalaman sebelumnya