Share to: share facebook share twitter share wa share telegram print page

Book of Lemmas

The first page of the Book of Lemmas as seen in The Works of Archimedes (1897).

The Book of Lemmas or Book of Assumptions (Arabic Maʾkhūdhāt Mansūba ilā Arshimīdis) is a book attributed to Archimedes by Thābit ibn Qurra, though the authorship of the book is questionable. It consists of fifteen propositions (lemmas) on circles.[1]

History

Translations

The Book of Lemmas was first introduced in Arabic by Thābit ibn Qurra; he attributed the work to Archimedes. A translation from Arabic into Latin by John Greaves and revised by Samuel Foster (c. 1650) was published in 1659 as Lemmata Archimedis. Another Latin translation by Abraham Ecchellensis and edited by Giovanni A. Borelli was published in 1661 under the name Liber Assumptorum.[2] T. L. Heath translated Heiburg's Latin work into English in his The Works of Archimedes.[3][4] A more recently discovered manuscript copy of Thābit ibn Qurra's Arabic translation was translated into English by Emre Coşkun in 2018.[5]

Authorship

The original authorship of the Book of Lemmas has been in question because in proposition four, the book refers to Archimedes in third person; however, it has been suggested that it may have been added by the translator.[6] Another possibility is that the Book of Lemmas may be a collection of propositions by Archimedes later collected by a Greek writer.[1]

New geometrical figures

The Book of Lemmas introduces several new geometrical figures.

Arbelos

The arbelos is the shaded region (grey).

Archimedes first introduced the arbelos (shoemaker's knife) in proposition four of his book:

If AB be the diameter of a semicircle and N any point on AB, and if semicircles be described within the first semicircle and having AN, BN as diameters respectively, the figure included between the circumferences of the three semicircles is "what Archimedes called αρβηλος"; and its area is equal to the circle on PN as diameter, where PN is perpendicular to AB and meets the original semicircle in P.[1]

The figure is used in propositions four through eight. In propositions five, Archimedes introduces the Archimedes's twin circles, and in proposition eight, he makes use what would be the Pappus chain, formally introduced by Pappus of Alexandria.

Salinon

The salinon is the blue shaded region.

Archimedes first introduced the salinon (salt cellar) in proposition fourteen of his book:

Let ACB be a semicircle on AB as diameter, and let AD, BE be equal lengths measured along AB from A, B respectively. On AD, BE as diameters describe semicircles on the side towards C, and on DE as diameter a semicircle on the opposite side. Let the perpendicular to AB through O, the centre of the first semicircle, meet the opposite semicircles in C, F respectively. Then shall the area of the figure bounded by the circumferences of all the semicircles be equal to the area of the circle on CF as diameter.[1]

Archimedes proved that the salinon and the circle are equal in area.

Propositions

  1. If two circles touch at A, and if CD, EF be parallel diameters in them, ADF is a straight line.
  2. Let AB be the diameter of a semicircle, and let the tangents to it at B and at any other point D on it meet in T. If now DE be drawn perpendicular to AB, and if AT, DE meet in F, then DF = FE.
  3. Let P be any point on a segment of a circle whose base is AB, and let PN be perpendicular to AB. Take D on AB so that AN = ND. If now PQ be an arc equal to the arc PA, and BQ be joined, then BQ, BD shall be equal.
  4. If AB be the diameter of a semicircle and N any point on AB, and if semicircles be described within the first semicircle and having AN, BN as diameters respectively, the figure included between the circumferences of the three semicircles is "what Archimedes called αρβηλος"; and its area is equal to the circle on PN as diameter, where PN is perpendicular to AB and meets the original semicircle in P.
  5. Let AB be the diameter of a semicircle, C any point on AB, and CD perpendicular to it, and let semicircles be described within the first semicircle and having AC, CB as diameters. Then if two circles be drawn touching CD on different sides and each touching two of the semicircles, the circles so drawn will be equal.
  6. Let AB, the diameter of a semicircle, be divided at C so that AC = 3/2 × CB [or in any ratio]. Describe semicircles within the first semicircle and on AC, CB as diameters, and suppose a circle drawn touching the all three semicircles. If GH be the diameter of this circle, to find relation between GH and AB.
  7. If circles are circumscribed about and inscribed in a square, the circumscribed circle is double of the inscribed square.
  8. If AB be any chord of a circle whose centre is O, and if AB be produced to C so that BC is equal to the radius; if further CO meets the circle in D and be produced to meet the circle the second time in E, the arc AE will be equal to three times the arc BD.
  9. If in a circle two chords AB, CD which do not pass through the centre intersect at right angles, then (arc AD) + (arc CB) = (arc AC) + (arc DB).
  10. Suppose that TA, TB are two tangents to a circle, while TC cuts it. Let BD be the chord through B parallel to TC, and let AD meet TC in E. Then, if EH be drawn perpendicular to BD, it will bisect it in H.
  11. If two chords AB, CD in a circle intersect at right angles in a point O, not being the centre, then AO2 + BO2 + CO2 + DO2 = (diameter)2.
  12. If AB be the diameter of a semicircle, and TP, TQ the tangents to it from any point T, and if AQ, BP be joined meeting in R, then TR is perpendicular to AB.
  13. If a diameter AB of a circle meet any chord CD, not a diameter, in E, and if AM, BN be drawn perpendicular to CD, then CN = DM.
  14. Let ACB be a semicircle on AB as diameter, and let AD, BE be equal lengths measured along AB from A, B respectively. On AD, BE as diameters describe semicircles on the side towards C, and on DE as diameter a semicircle on the opposite side. Let the perpendicular to AB through O, the centre of the first semicircle, meet the opposite semicircles in C, F respectively. Then shall the area of the figure bounded by the circumferences of all the semicircles be equal to the area of the circle on CF as diameter.
  15. Let AB be the diameter of a circle., AC a side of an inscribed regular pentagon, D the middle point of the arc AC. Join CD and produce it to meet BA produced in E; join AC, DB meeting in F, and Draw FM perpendicular to AB. Then EM = (radius of circle).[1]

References

  1. ^ a b c d e Heath, Thomas Little (1897), The Works of Archimedes, Cambridge University: University Press, pp. xxxii, 301–318, retrieved 2008-06-15
  2. ^ "From Euclid to Newton". Brown University. Archived from the original on 2008-02-24. Retrieved 2008-06-24.
  3. ^ Aaboe, Asger (1997), Episodes from the Early History of Mathematics, Washington, D.C.: Math. Assoc. of America, pp. 77, 85, ISBN 0-88385-613-1, retrieved 2008-06-19
  4. ^ Glick, Thomas F.; Livesey, Steven John; Wallis, Faith (2005), Medieval Science, Technology, and Medicine: An Encyclopedia, New York: Routledge, p. 41, ISBN 0-415-96930-1, retrieved 2008-06-19
  5. ^ Coşkun, Emre (2018). "Thābit ibn Qurra's Translation of the Maʾkhūdhāt Mansūba ilā Arshimīdis" (PDF). SCIAMVS: Sources and Commentaries in Exact Sciences. 19: 53–102.
  6. ^ Bogomolny, A. "Archimedes' Book of Lemmas". Cut-the-Knot. Retrieved 2008-06-19.

Read other articles:

فالف أنتي-شيتالشعارمعلومات عامةنوع anti-cheat software (en) نظام التشغيل مايكروسوفت ويندوز، أو إس عشرة، جنو/لينكسالمنصة مايكروسوفت ويندوز، جنو/لينكسالنموذج المصدري حقوق التأليف والنشر محفوظة المطورون فالفموقع الويب help.steampowered.com… (لغات متعددة) معلومات تقنيةحالة التطوير نشطالإصدار

 

Gilgul neszamot (hebr. גלגול נשמות) – żydowska doktryna metempsychozy, wywodząca się prawdopodobnie z doktryn greckich i gnostyckich. Historia i opis W mistyce żydowskiej obecna od XIII w., za sprawą Sefer ha-Bahir. We wczesnej kabale uważano, że gilgul może trwać nawet tysiąc pokoleń, Zohar podaje natomiast, że jedynie trzy. Opiera się przy tym na wykładni wersetu z Księgi Hioba (33:29). Wedle doktryny gilgul każda dusza z natury pragnie uzyskać doskonałość i ...

 

Cet article est une ébauche concernant la politique québécoise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Logo du comité du OUI lors du référendum de 1980 Le Mouvement Souveraineté-Association (ou MSA) est un mouvement politique créé par René Lévesque en novembre 1967 dans le but de promouvoir les idées de l'indépendance de la province du Québec, au Canada, et de la création d'un partenariat ...

Azerbaycan BaşbakanıAzerbaycan armasıGörevdekiAli Asadov8 Ekim 2019 tarihinden beriAtayanİlham AliyevAzerbaycan Cumhurbaşkanı olarakOluşum7 Şubat 1991Açılışı yapanHasan Hasanov Azerbaycan Başbakanı, Azerbaycan Cumhurbaşkanı'ndan sonra ülkenin en yüksek 3. siyasi makamıdır. Cumhurbaşkanı tarafından atanır. Mevcut başbakan 8 Ekim 2019 tarihinden beri Ali Esedov'dur. Azerbaycan Demokratik Cumhuriyeti Sıra İsim(Doğum-Ölüm) Fotoğraf Göreve Başlama Görevden ...

 

Small lens-shaped nucleus in the brain Subthalamic nucleusCoronal slices of human brain showing the basal ganglia (external globus pallidus (GPe) and internal globus pallidus (GPi)), subthalamic nucleus (STN) and substantia nigra (SN).DA-loops in Parkinson's diseaseDetailsPart ofSubthalamus (physically); basal ganglia (functionally)IdentifiersLatinnucleus subthalamicusAcronym(s)STNMeSHD020531NeuroNames435NeuroLex IDnlx_anat_1010002TA98A14.1.08.702TA25709FMA62035Anatomical terms of neuroanatom...

 

Sadako and the Thousand Paper Cranes Sadako and the Thousand Paper CranesPengarangEleanor CoerrJudul asliサダコと千羽鶴 (Sadako to senbadzuru)NegaraAmerika SerikatBahasaInggrisSubjekSadako, 1000 bangau kertasGenreSastra non-fiksi anak-anakPenerbitG. P. Putnam's SonsTanggal terbit1977Jenis mediaPrint (Paperback)Halaman80 Sadako and the Thousand Paper Cranes[1] (Sadako dan Seribu Bangau Kertas) adalah buku non-fiksi anak-anak yang ditulis oleh penulis AS Eleanor Co...

Maru KiuchiIni Maidome Kiuchi. 2019Nama asal木内 舞留Lahir03 Januari 2002 (umur 21)Tokyo, JepangKebangsaanJepangPekerjaanAktris dan tarentoTahun aktif2012–sekarangTinggi157 cm (5 ft 2 in)[1] Maru Kiuchi (木内 舞留code: ja is deprecated , Kiuchi Maru, lahir 3 Januari 2002) merupakan seorang pemeran dan tarento berkebangsaan Jepang. Ia dikenal dengan perannya dalam serial televisi berjudul Oniichan, Gacha di saluran televisi Nippon Television pada...

 

DowoonNama asal윤도운LahirYoon Dowoon25 Agustus 1995 (umur 28)Seoul, Korea SelatanKebangsaanKorea SelatanPendidikanBusan Arts CollegePekerjaanDrummerTahun aktif2015-sekarangTempat kerjaJYP EntertainmentKota asalBusan, Korea SelatanTinggi178 cm (5 ft 10 in)Situs webhttps://www.instagram.com/d.ddablue/ https://day6.jype.com Yoon Dowoon (Hangul: 윤도운) (lahir 25 Agustus 1995) adalah anggota band asal Korea Selatan, DAY6. Dowoon adalah pemain drum, maknae...

 

Johnson County County in de Verenigde Staten Situering Staat Iowa Coördinaten 41°40'0NB, 91°35'0WL Algemeen Oppervlakte 1.614 km² - land 1.591 km² - water 23 km² Inwoners (2000) 111.006 (70 inw./km²) Overig Zetel Iowa City FIPS-code 19103 Opgericht 1837 Foto's Bevolkingspiramide Johnson County Statistieken volkstelling Johnson County Portaal    Verenigde Staten Johnson County is een county in de Amerikaanse staat Iowa, vernoemd naar de negende vicepresident van de Verenigde S...

Джеррі О'Колмен Загальна інформаціяПовне ім'я Джероїд О'КолменГромадянство  ІрландіяНародився 1924(1924)Дублін, ІрландіяПомер 3 листопада 2008(2008-11-03)Дублін, ІрландіяВагова категорія напівважка, важкаСпортивний клуб North City Boxing Club Спортивні медалі Чемпіонат Європи з боксу З�...

 

Perang Salib WendBagian dari Perang Salib UtaraPenangkapan orang-orang WendTanggal1147LokasiEropa Tengah (kini Mecklenburg, di Dobin am See, Demmin dan Malchow)Hasil Kemenangan Tentara Salib, sebagian orang Slavia Barat dijadikan KatolikPerubahanwilayah Markgrafschaft Brandenburg menaklukkan kembali Havelberg, Grafschaft Holstein mengusir orang-orang WendPihak terlibat Tentara Salib: Kekaisaran Romawi Suci Keuskupan Havelberg Markgrafschaft Meissen [1] Markgrafschaft Brandenburg Kadip...

 

Ця стаття містить перелік посилань, але походження тверджень у ній залишається незрозумілим через практично повну відсутність внутрішньотекстових джерел-виносок. Будь ласка, допоможіть поліпшити цю статтю, перетворивши джерела з переліку посилань на джерела-виноски у...

Song and single by Yoko Ono She Gets Down on Her KneesSong by Yoko Onofrom the album A Story ReleasedJuly 1997Recorded1974Length4:50LabelRykodiscSongwriter(s)Yoko OnoProducer(s)Yoko Ono, David Spinozza She Gets Down on Her KneesSong by Yoko Onofrom the album Season of Glass Released8 June 1981Recorded1981StudioThe Hit Factory, New York CityLength4:13LabelGeffenSongwriter(s)Yoko OnoProducer(s)Yoko Ono, Phil Spector She Gets Down on Her KneesSingle by Yoko OnoReleased7 February 2012Genre Rock d...

 

Demografi Mazhab dan cabang Islam   Sunni Hanafi (45%)  Sunni Syafi'i (28%)  Sunni Maliki (15%)  Sunni Hambali (2%)  Syiah Dua Belas Imam (8.5%)  Syiah Zaidiyah (0.5%)  Syiah Ismailiyah (0.5%)  Islam Ibadi (0.5%) Mazhab dan cabang Islam memiliki pemahaman yang berbeda tentang Islam. Ada banyak sekte atau denominasi, mazhab, dan teologi atau aqīdah yang berbeda satu sama lain. Bahkan di dalam kelompok Islam yang s...

 

Mid America Off Road AssociationSportOff road racingCategoryMotorsportsJurisdictionUnited StatesAbbreviationMAORAFounded1972HeadquartersP.O. Box 664 Greenup, Illinois 62428PresidentSpencer Rising-MooreSecretaryLyndsey FasbenderOther key staffVice President: Brian Daffron Treasurer: Debbie Carlen Tech Director: Dave FasbenderOfficial websitewww.maoraracing.us The Mid America Off Road Association (MAORA) is an American off road racing sanctioning. It has sanctioned off road racing events since ...

Malaysian politician and lawyer In this Chinese name, the family name is Chong (张). Yang Berhormat TuanChong Chieng JenMP MLA张健仁Chong in 2013Deputy Minister of Domestic Trade and Consumer AffairsIn office2 July 2018 – 24 February 2020MonarchsMuhammad V (2018–2019) Abdullah (2019–2020)Prime MinisterMahathir MohamadMinisterSaifuddin Nasution IsmailPreceded byHenry Sum Agong (Deputy Minister of Domestic Trade, Co-operatives and Consumerism)Succeeded byRosol WahidConstituen...

 

Conceptual artificial ring around the Earth This article is about artificial planet-spanning object. For naturally occurring rings, see ring system. For rings made of artificial satellites, see orbit. Ceres orbital ring concept An orbital ring that has fixed tethers hanging down to the ground. The stations produce lift by bending the ring cable downward as it passes through them. An orbital ring is a concept of an artificial ring placed around a body and set rotating at such a rate that the a...

 

Daftar keuskupan di Guatemala adalah sebuah daftar yang memuat dan menjabarkan pembagian terhadap wilayah administratif Gereja Katolik Roma yang dipimpin oleh seorang uskup ataupun ordinaris di Guatemala. Konferensi para uskup Guatemala bergabung dalam Konferensi Waligereja Guatemala. Per Juni 2020, terdapat 16 buah yurisdiksi, di mana 2 merupakan keuskupan agung, 11 merupakan keuskupan sufragan, 1 merupakan prelatur teritorial, dan 2 merupakan vikariat apostolik. Daftar keuskupan Provinsi Ge...

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2011) (Learn how and when to remove this template message) Arab Tribe Banu Abs(Arabic: بنو عبس)Ghatafan, Qays, AdnaniteNisbaAl-ʿAbsīLocationSaudi Arabia, Oman, Qatar, Eritrea, Kuwait, Jordan, United Arab Emirates, Palestine, Syria, Lebanon, Yemen, Egypt, Arab world, Malaysia, Europe, United States, ...

 

Postclassic Maya state Itza Kingdom1194–1697The Itza kingdomStatusKingdomCapitalNojpeténCommon languagesItza’Religion Maya religionGovernmentMonarchyHistorical erapost classic period• Hunac Ceel forces the Itza people out of Chichen Itza 1194• Spanish invasion. 1697 Preceded by Succeeded by League of Mayapan New Spain Today part ofMexicoGuatemalaBelize The Peten Itza kingdom was a kingdom centered on the island-city of Nojpetén on Lake Peten Itza. Nojpetén Main artic...

 
Kembali kehalaman sebelumnya