Chemokine (C-C motif) ligand 5 (also CCL5) is a protein which in humans is encoded by the CCL5gene.[5] The gene has been discovered in 1990 by in situ hybridisation and it is localised on 17q11.2-q12 chromosome.[6]
It is also known as RANTES (regulated on activation, normal T-cellexpressed and secreted). RANTES was first described by Dr. Tom Schall who named the protein, the original source of the name Rantes was from the Argentine movie Man Facing Southeast about an alien who shows up in a mental ward who was named Rantés, the rather clunky acronym was only made to fit the name.[7]
The chemokine CCL5 is mainly expressed by T-cells and monocytes,[11] and it has not been shown to be expressed by B-cells.[12] Moreover, it is abundantly expressed by epithelial cells, fibroblasts and thrombocytes. Although it can bind to receptors CCR1, CCR3, CCR4 and CCR5, belonging to seven transmembrane G-protein coupled receptor (GPCRs) family,[8] it has the highest affinity to the CCR5. CCR5 is presented on the surface of T-cells, smooth muscle endothelial cells, epithelial cells, parenchymal cells and other cell types. After the binding of CCL5 to CCR5, phosphoinositide 3-kinase (PI3K) is phosphorylated and subsequently, the phosphorylated PI3K phosphorylates protein kinase B (PKB; also known as Akt) on the serine 473. Then, the Akt/PKB complex phosphorylates and inactivates a serine/threonine protein kinase GSK-3. After the CCL5/CCR5 binding, some other proteins are regulated as well. Bcl2 is more expressed and it induces apoptosis. Beta-catenin is phosphorylated and degraded. An important protein in the cell cycle, Cyclin D, is inhibited by inactivated GSK-3.[11]
CCL5 was first identified in a search for genes expressed "late" (3–5 days) after T cell activation. It was subsequently determined to be a CC chemokine and expressed in more than 100 human diseases. RANTES expression is regulated in T lymphocytes by Kruppel like factor 13 (KLF13).[13][14][15][16] The CCL5 gene is activated after 3–5 days after activation of T-cell via TCR. This is different from the most of other chemokines which are released almost immediately after cell stimulation. Thus, CCL5 is involved in inflammation maintaining. It also induces expression of matrix metalloproteinases which are important for migration of cells into the site of inflammation.[12] CCL5 may be also expressed by NK cells. SP1 transcription factor binds near to CCL5 gene and mediates its constitutive mRNA transcription. The transcription factor is regulated by the JNK/MAPK pathway.[17] Memory CD8+ T-cells are able to secrete CCL5 immediately after TCR stimulation, because they have a large number of preformed CCL5 mRNA in cytoplasm and its secretion is dependent only on translation.[18]
RANTES, along with the related chemokines MIP-1alpha and MIP-1beta, has been identified as a natural HIV-suppressive factor secreted by activated CD8+ T cells and other immune cells.[10] The RANTES protein has been engineered for in vivo production by Lactobacillus bacteria, and this solution is being developed into a possible HIV entry-inhibiting topical microbicide.[19]
CCL5 also activates the G-protein coupled receptor GPR75.[25]
CCL5 has two mechanisms of action according to its concentration.
The first one occurs at low concentration of the chemokine. CCL5 may act as a monomer or a dimer. Dimerization is not necessary for binding to CCR5. Thus, CCL5 in nanomolar concentration acts as classical chemokine and binds to its receptor. For the acting as classical chemokine and for the dimerization, N terminus of the molecule is important.
The second one occurs at high concentration of the chemokine. CCL5 creates self-aggregates binding to glycosaminoglycans (GAGs) on the cell surface. For that, Glu66 and Glu26 are important. These amino acids are presented on the protein surface and allows ion interactions. In the experiment where these molecules were exchanged for serine, the self-aggregation did not occur.[26]In vitro, the self-aggregates are strong activators of leukocytes. They can act as mitogens and they are not dependent on binding to the receptor. Activated T-cells (or other cells, for instance monocytes or neutrophils) either proliferate or perform apoptosis, and they release proinflammatory cytokines, such as IL-2, IL-5 and IFN-γ.[8] CCL5 mediated apoptosis in T-cells includes release of cytochrome c in cytoplasm and the activation of caspase-9 and caspase-3. The apoptosis is dependent on GAGs binding on cell surface and there is a requirement of at least 4 CCL5 molecules to induce the apoptosis.[27]
Clinical significance
CCL5 is involved in transplantations,[12] anti-viral immunity,[8]tumor development [28] and numerous human diseases and disorders, for instance viral hepatitis or COVID-19.[6][11]
Importance of CCL5 is proved by various microbial strategies to avoid the activity of chemokine. For instance, human cytomegalovirus (HCMV) express a viral chemokine receptor analogue US28, which sequesters CCL5. The chemokine is released by virus-specific activated CD8+ T-cells together with perforin and granzyme A. In cytotoxic T-cells (CTL) killing other cells via Fas/FasL interaction, CCL5 increases HIV-specific T-cell cytotoxicity. Moreover, it is considered that CCL5 in low concentration might inhibit HIV replication. It binds to CCR5 (as well as 2 other chemokines) on the surface of CD4+ T-cells. CCR5 is used by HIV as an entrance molecule to a cell. On the contrary, CCL5 in high concentration might increase HIV replication.[8] The chemokine is involved also in antiviral response against other viruses. For instance, it has been shown that CCL5 is highly expressed in mice infected by lymphocytic choriomeningitis virus. In CCL5 knock-out mice, virus-specific CD8+ T cells had reduced cytotoxic ability, reduced cytokines production and enhanced production of inhibitory molecules. It underscores the importance of CCL5 during chronic viral infection.[29]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Donlon TA, Krensky AM, Wallace MR, Collins FS, Lovett M, Clayberger C (March 1990). "Localization of a human T-cell-specific gene, RANTES (D17S136E), to chromosome 17q11.2-q12". Genomics. 6 (3): 548–553. doi:10.1016/0888-7543(90)90485-D. hdl:2027.42/28717. PMID1691736.
^Maghazachi AA, Al-Aoukaty A, Schall TJ (February 1996). "CC chemokines induce the generation of killer cells from CD56+ cells". European Journal of Immunology. 26 (2): 315–319. doi:10.1002/eji.1830260207. PMID8617297. S2CID25389419.
^Slimani H, Charnaux N, Mbemba E, Saffar L, Vassy R, Vita C, Gattegno L (October 2003). "Interaction of RANTES with syndecan-1 and syndecan-4 expressed by human primary macrophages". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1617 (1–2): 80–88. doi:10.1016/j.bbamem.2003.09.006. PMID14637022.
Zhao RY, Bukrinsky M, Elder RT (April 2005). "HIV-1 viral protein R (Vpr) & host cellular responses". The Indian Journal of Medical Research. 121 (4): 270–286. PMID15817944.