Share to: share facebook share twitter share wa share telegram print page

Gupta–Bleuler formalism

In quantum field theory, the Gupta–Bleuler formalism is a way of quantizing the electromagnetic field. The formulation is due to theoretical physicists Suraj N. Gupta[1] and Konrad Bleuler.[2]

Overview

Firstly, consider a single photon. A basis of the one-photon vector space (it is explained why it is not a Hilbert space below) is given by the eigenstates where , the 4-momentum is null () and the component, the energy, is positive and is the unit polarization vector and the index ranges from 0 to 3. So, is uniquely determined by the spatial momentum . Using the bra–ket notation, this space is equipped with a sesquilinear form defined by

,

where the factor is to implement Lorentz covariance. The metric signature used here is +−−−. However, this sesquilinear form gives positive norms for spatial polarizations but negative norms for time-like polarizations. Negative probabilities are unphysical, not to mention a physical photon only has two transverse polarizations, not four.

If one includes gauge covariance, one realizes a photon can have three possible polarizations (two transverse and one longitudinal (i.e. parallel to the 4-momentum)). This is given by the restriction . However, the longitudinal component is merely an unphysical gauge. While it would be nice to define a stricter restriction than the one given above which only leaves the two transverse components, it is easy to check that this can't be defined in a Lorentz covariant manner because what is transverse in one frame of reference isn't transverse anymore in another.

To resolve this difficulty, first look at the subspace with three polarizations. The sesquilinear form restricted to it is merely semidefinite, which is better than indefinite. In addition, the subspace with zero norm turns out to be none other than the gauge degrees of freedom. So, define the physical Hilbert space to be the quotient space of the three polarization subspace by its zero norm subspace. This space has a positive definite form, making it a true Hilbert space.

This technique can be similarly extended to the bosonic Fock space of multiparticle photons. Using the standard trick of adjoint creation and annihilation operators, but with this quotient trick, one can formulate a free field vector potential as an operator valued distribution satisfying

with the condition

for physical states and in the Fock space (it is understood that physical states are really equivalence classes of states that differ by a state of zero norm).

This is not the same thing as

.

Note that if O is any gauge invariant operator,

does not depend upon the choice of the representatives of the equivalence classes, and so, this quantity is well-defined.

This is not true for non-gauge-invariant operators in general because the Lorenz gauge still leaves residual gauge degrees of freedom.

In an interacting theory of quantum electrodynamics, the Lorenz gauge condition still applies, but no longer satisfies the free wave equation.

See also

Notes

References

  • Bleuler, K. (1950), "Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen", Helv. Phys. Acta (in German), 23 (5): 567–586, doi:10.5169/seals-112124(pdf download available){{citation}}: CS1 maint: postscript (link)
  • Gupta, S. (1950), "Theory of Longitudinal Photons in Quantum Electrodynamics", Proc. Phys. Soc., 63A (7): 681–691, Bibcode:1950PPSA...63..681G, doi:10.1088/0370-1298/63/7/301

Read other articles:

French novelist (born c. 1948) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (March 2019) Cookie Allez (born c. 1948) is a French novelist. Early life Cookie Allez was born circa 1948.[1] Career She has written seven novels.[1] Her second novel, La Soupière, talked about a mother and her son, who works as a clinical assistant.[2] In her seventh novel, Domin...

 

Ice GirlDitulis olehMoon Eun-ahSutradaraKim Myeong-wook Lee Jin-seoPemeranKim Hyo-jin Kim Joo-seung Kim Nam-jin Seo Ji-hyeNegara asalKorea SelatanJmlh. episode16ProduksiProduserJung Sung-hyoDurasiSenin dan Selasa pukul 21:55 (WSK)RilisJaringan asliKorean Broadcasting SystemRilis asli27 Juni (2005-06-27) –16 Agustus 2005 (2005-8-16)Pranala luarSitus web Ice Girl (Hangul: 그녀가 돌아왔다; RR: Geunyeoga Dolawassda; lit. That Girl Returned) adalah ser...

 

Standar Kerajaan Yordania adalah standar kerajaan yang digunakan oleh beberapa anggota keluarga kerajaan Yordania. Anggota keluarga kerajaan yang menggunakan standar ini ialah raja dan mantan raja Yordania. Bendera ini menyerupai bendera Yordania. Standar Raja Yordania[1] Gambaran Standa Raja Yordania (kini Abdullah II) sangatlah unik. Standar ini memiliki bendera nasional di tengah-tengahnya, namun bintang pada bendera nasional diganti oleh mahkota yang berkelok-kelok. Bendera nasion...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. أولمبياد الفلك الدولي (بالإنجليزية: International Astronomy Olympiad)‏ هو مسابقة سنوية في علم الفلك لطلاب المدارس الثانوية بين عمر ( 14 _ 18 )، وهو أحد مسابقات الأولمبياد الدولي للعلوم، تأسست ال

 

Der 2018 wiederaufgebaute Hof zum Rebstock, Juni 2018, Westseite Innenhof des Rebstocks und die Kruggasse, nach Norden vom Haus Markt 8 gesehen, vor 1904(Ansichtskarte) Position des Hofs in der Frankfurter Altstadt(Chromolithografie, 1904) Der Hof Rebstock am Markt war ein historischer Patrizierhof im Kern der Altstadt von Frankfurt am Main. Der Namenszusatz am Markt bezieht sich auf seine Lage am östlichen Markt und dient der Abgrenzung zum gleichnamigen, ehemaligen Gutshof im heutigen Stad...

 

Ruta Estatal de Alabama 51  Alabama,  Estados UnidosDatos de la rutaIdentificador  51 Tipo Ruta EstatalInauguración 1940Longitud 183,76 km (114.18 mi)AdministraciónAdministración ALDOTOrientación • Sur US 84 en New Brockton • Norte I-85/US 29/US 280 en OpelikaCruces US 231 noroeste del condado de Dale US 82 en Midway US 80 en Marvyn, ALUbicación 32°04′18″N 85°31′07″O / 32.07162, -85.518748Siguientes rutas ...

الاحتجاجات التشيلية 2019–2021   المعلومات البلد تشيلي  الموقع سانتياغو،  وكونسبسيون،  وفالبارايسو  تسبب في حظر التجول  الخسائر الوفيات 34   الإصابات 2500 [1]  تعديل مصدري - تعديل   الاحتجاجات التشيلية 2019-20، التي تعرف في تشيلي بالانفجار الاجتماعي (El Estallido S...

 

Опис Фото Джерело В.Білецький Час створення 2016 Автор зображення В.Білецький Ліцензія див. нижче Я, власник авторських прав на цей твір, добровільно передаю його у суспільне надбання. У випадку, якщо це юридично неможливо, надаю право використовувати це зображення з будь-як

 

Culture of China Stone Statue of Laozi (Ló-tsú in Hoklo language) at Mount Qingyuan in Quanzhou, Hokkien, China. Minnan culture or Hokkien/Hoklo culture (Hokkien Pe̍h-ōe-jī: Bân-lâm bûn-hòa; Chinese: 閩南文化), also considered as the Mainstream Southern Min Culture, refers to the culture of the Hoklo people, a group of Han Chinese people who have historically been the dominant demographic in the province of Fujian (called Hokkien in the Hoklo language) in Southern China, Taiw...

У Вікіпедії є статті про інші значення цього терміна: Західна Україна (значення). Західна Україна Тип тижневикМова українськаФормат А2, А3 Засновано 1991Головний редактор Володимир АндріїшинПрипинення публікацій 1996Головний офіс вул. Торговиця, 11, м. Тернопіль «Західн...

 

Kecer adalah alat musik tradisional Jawa atau termasuk salah satu karawitan Jawa yang dimainkan dengan cara menggerakkan talinya dengan tangkupan logam yang berada di bawah tali agar berbenturan dan menghasilkan suara yang ritmis dan sesuai dengan irama gending yang dimainkan. Kecer berbentuk persegi delapan atau bulat yang atasnya cembung dan berlubang untuk tempat mengikat talinya. [1] Disebut kecer karena bunyinya car-cer-car-cer saat kedua belah logam itu dipukul-pukulkan satu sama lain. ...

 

Mohamad IsaAnggota Majelis Permusyawaratan RakyatMasa jabatan15 September 1960 – 20 Oktober 1966PresidenSukarnoAnggota Dewan Perwakilan RakyatMasa jabatan24 Maret 1956 – 2 Mei 1964PresidenSukarnoGubernur Sumatera SelatanMasa jabatan25 Juni 1948 – 1 Agustus 1954PendahuluDirinya sendiri(sebagai Gubernur Muda Sumatera Selatan)PenggantiWinarno DanuatmodjoGubernur Muda Sumatera SelatanMasa jabatan16 Oktober 1946 – 25 Juni 1948PresidenSukarnoPendahuluAdna...

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Louisiana (Begriffsklärung) aufgeführt. Louisiana Flagge Siegel Karte der USA, Louisiana hervorgehobenListe der BundesstaatenHauptstadt:Baton RougeStaatsmotto:Union, Justice, ConfidenceAmtssprache:de jure: keine de facto: Englisch und Französisch von Behörden benutztFläche:134.264 km²Einwohner:4.657.757 (Zensus 2020) (34 E. / km²)Mitglied seit:30. April 1812Zeitzone:Central: UTC−6/−5Höchster Punkt:163 m (Dris...

 

Dutch astronomer (born 1940) In this Dutch name, the surname is Van den Heuvel. Ed van den HeuvelVan den Heuvel in 2007Born (1940-11-02) 2 November 1940 (age 83)Soest, NetherlandsAlma materUtrecht UniversityKnown forCompact objects, gamma ray burstsAwardsSpinoza Prize (1995), Descartes Prize (2002), Viktor Ambartsumian International Science Prize (2018)Scientific careerFieldsAstronomyInstitutionsUniversity of Amsterdam Websitewww.astro.uva.nl/people/ed-van-den-heuvel Edward Pet...

 

Villa Obernier als städtisches Museum (vor 1904) Die Villa Obernier war eine Villa am Rheinufer in Bonn, die von 1849 bis 1851 errichtet und im Zweiten Weltkrieg zerstört wurde. Sie beherbergte als Stiftung ihres kurzzeitigen Besitzers Franz Obernier ab 1884 das erste und über Jahrzehnte einzige Museum zeitgenössischer Kunst und städtische Kunstmuseum Bonns. Inhaltsverzeichnis 1 Geschichte 1.1 Villa Bluhme/Obernier 1.2 Städtisches Museum Villa Obernier 1.2.1 Ausstellungen (Auswahl) 2 Li...

Ermida    Freguesia portuguesa extinta   Vista da Igreja Matriz de ErmidaVista da Igreja Matriz de Ermida Símbolos Brasão de armas Localização Localização no Concelho de Castro DaireLocalização no Concelho de Castro Daire ErmidaLocalização de Ermida em Portugal Continental Mapa de Ermida Coordenadas 40° 57' 26 N 7° 57' 37 O município primitivo Castro Daire município (s) atual (is) Castro Daire Freguesia (s) atual (is) ...

 

Elezioni amministrative del 2022 26 comuni capoluogo di provincia Centro-destra 13 / 26 Centro-sinistra 10 / 26 Liste civiche 3 / 26 2021 2023 Le elezioni amministrative in Italia del 2022 si sono tenute il 12 giugno (in concomitanza ai referendum abrogativi), con gli eventuali turni di ballottaggio il 26 giugno.[1][2] Le elezioni amministrative si sono svolte in 975 comuni appartenenti alle regioni a statuto ordinario più Friuli Venezia Giulia, Sardegna e Sicilia, di cui 26 ...

 

Indian actress Ranjitha MenonBornThrissur, Kerala, IndiaOccupations Actress model Notable workSaajan Bakery Since 1962Pathrosinte Padappukal Ranjitha Menon is an Indian actress and model who predominantly works in the Malayalam film Industry.[1][2][3] She is known for her role as a heroine in the films Saajan Bakery Since 1962 (2020)[4] and Pathrosinte Padappukal (2022).[5] Her role as Merin in Saajan Bakery Since 1962 has been critically acclaimed by f...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sammy's Pizza – news · newspapers · books · scholar · JSTOR (January 2019) (Learn how and when to remove this template message) Sammy's Pizza & Restaurant, Sammy Perrella's Pizza & RestaurantFounded1954; 69 years ago (1954)Headquarters...

 

1483 painting by Piero del Pollaiuolo Coronation of the Virgin, 1483 The altarpiece of the Coronation of the Virgin by Piero del Pollaiuolo behind the high altar in the church of Sant'Agostino, San Gimignano in Tuscany, Italy, was painted in 1483.[1] As the painter's only signed and dated work it is a key piece of evidence in the question of which paintings to attribute to Piero and which to his more famous brother, Antonio del Pollaiuolo, which has become a contentious subject in rec...

 
Kembali kehalaman sebelumnya