HD 131399 is a star system in the constellation of Centaurus. Based on the system's electromagnetic spectrum, it is located around 350 light-years (107.9 parsecs) away.[5] The total apparent magnitude is 7.07,[5] but because of interstellar dust between it and the Earth, it appears 0.22 ± 0.09 magnitudes dimmer than it should be.[5]
The brightest star, is a young A-type main-sequence star, and further out are two lower-mass stars.[3] A Jupiter-mass planet or a low-mass brown dwarf was once thought to be orbiting the central star, but this has been ruled out.[5][9]
Stellar system
The brightest star in the HD 131399 system is designated HD 131399 A. Its spectral type is A1V,[3] and it is 2.08 times as massive as the Sun.[5] The two lower-mass stars are designated HD 131399 B and C, respectively. B is a G-type main-sequence star, while HD 131399 C is a K-type main-sequence star.[3] Both stars are less massive than the Sun.[5]
HD 131399 B and C are located very close to each other, and the two orbit each other at about 10 AU.[10] In turn, the B-C pair orbits the central star A at a distance of 349 astronomical units (au). This orbit takes about 3,600 years to complete, and it has an eccentricity of about 0.13[3] The entire system is about 21.9 million years old.[5]
One paper has reported that HD 131399 A has a companion in an inclined 10-day orbit with a semi-major axis of 0.1 AU.[11] HD 131399 A has been described as a "nascent Am star"; although it has a very slow projected rotation rate and would be expected to show chemical peculiarities, its spectrum is relatively normal, possibly due to its young age.[7]
Claims of a planetary system
The claimed discovery of a massive planet, named HD 131399 Ab, was announced in a paper published in the journal Science.[3] The object was imaged using the SPHERE imager of the Very Large Telescope at the European Southern Observatory, located in the Atacama Desert of Chile, and announced in a July 2016 paper in the journal Science.[3][12] It was thought to be a T-type object with a mass of 4 ± 1MJ,[3] but its orbit would have been unstable, causing it to be ejected between the primary's red giant phase and white dwarf phase.[13] This was the first exoplanet candidate to be discovered by SPHERE. The image was created from two separate SPHERE observations: one to image the three stars and one to detect the faint planet.[14] After its discovery, the team unofficially named the system "Scorpion-1" and the planet "Scorpion-1b", after the survey that prompted its discovery, the Scorpion Planet Survey (principal investigator: Daniel Apai).[15]
In May 2017, observations made by the Gemini Planet Imager and including a reanalysis of the SPHERE data suggest that this target is, in fact, a background star. This object's spectrum seems to be like that of a K-type or M-type dwarf, not a T-type object as first thought. It also initially appeared to be associated with HD 131399, but this was because of its unusually high proper motion (in the top 4% fastest-moving stars).[5] After subsequent data published in 2022 confirmed that the object is a background star, the paper announcing the putative discovery was retracted.[9][16]
^Høg, E.; et al. (2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy and Astrophysics. 355: L27–L30. Bibcode:2000A&A...355L..27H.
^Kharchenko, N. V.; et al. (2007). "Astrophysical supplements to the ASCC-2.5: Ia. Radial velocities of ~55000 stars and mean radial velocities of 516 Galactic open clusters and associations". Astronomische Nachrichten. 328 (9): 889. arXiv:0705.0878. Bibcode:2007AN....328..889K. doi:10.1002/asna.200710776. S2CID119323941.