HD 42936 has a very low mass companion star in a close orbit,[8] approaching to 0.498 AU at periastron.[6]
Planetary system
In 2019, a radial velocity analysis carried out by a team of astronomers led by astronomer John R. Barnes of the Dispersed Matter Planet Project (DMPP) confirmed the existence of a super-Earth in orbit around DMPP-3 A. Planets in close binary star systems such as this are rare.[8]
A follow-up study in 2023 refined the parameters of the planet and companion star, and detected two additional radial velocity signals. One of these could be caused by a second, Earth-mass planet closer to the star, but the other, 800-day signal cannot be caused by an orbiting body because the companion star would make its orbit unstable. The study concludes that the 800-day signal must be caused by stellar activity, but if not for the companion star it could have been considered a likely planet, which has implications for other radial velocity planet detections.[6]
^ abHouk, N.; Cowley, A. P. (1975). University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume I. Declinations -90_ to -53_ƒ0. Bibcode:1975mcts.book.....H.
^Cousins, A. W. J.; Stoy, R. H. (1962). "Photoelectric magnitudes and colours of Southern stars". Royal Greenwich Observatory Bulletins. 64: 103. Bibcode:1962RGOB...64..103C.
^Haswell, Carole A.; Staab, Daniel; Barnes, John R.; Anglada-Escudé, Guillem; Fossati, Luca; Jenkins, James S.; Norton, Andrew J.; Doherty, James P. J.; Cooper, Joseph (2019). "Dispersed Matter Planet Project discoveries of ablating planets orbiting nearby bright stars". Nature Astronomy. 4 (4): 408–418. arXiv:1912.10874. doi:10.1038/s41550-019-0973-y. S2CID209444484.
^ abcdeStevenson, Adam T.; Haswell, Carole A.; et al. (May 2023). "DMPP-3: confirmation of short-period S-type planet(s) in a compact eccentric binary star system, and warnings about long-period RV planet detections". Monthly Notices of the Royal Astronomical Society. arXiv:2305.06263.