The 16,569 bp long human mitochondrial genome with the protein-coding (red, orange, yellow), ribosomal RNA (blue), and transfer RNA genes (white). Non-coding mtDNA control region in grey.
Human mitochondrial genetics is the study of the genetics of human mitochondrial DNA (the DNA contained in human mitochondria). The human mitochondrial genome is the entirety of hereditary information contained in human mitochondria. Mitochondria are small structures in cells that generate energy for the cell to use, and are hence referred to as the "powerhouses" of the cell.
Mitochondrial DNA (mtDNA) is not transmitted through nuclear DNA (nDNA). In humans, as in most multicellular organisms, mitochondrial DNA is inherited only from the mother's ovum. There are theories, however, that paternal mtDNA transmission in humans can occur under certain circumstances.[3]
Mitochondrial inheritance is therefore non-Mendelian, as Mendelian inheritance presumes that half the genetic material of a fertilized egg (zygote) derives from each parent.
Eighty percent of mitochondrial DNA codes for mitochondrial RNA, and therefore most mitochondrial DNA mutations lead to functional problems, which may be manifested as muscle disorders (myopathies).
Because they provide 30 molecules of ATP per glucose molecule in contrast to the 2 ATP molecules produced by glycolysis, mitochondria are essential to all higher organisms for sustaining life. The mitochondrial diseases are genetic disorders carried in mitochondrial DNA, or nuclear DNA coding for mitochondrial components. Slight problems with any one of the numerous enzymes used by the mitochondria can be devastating to the cell, and in turn, to the organism.
Quantity
In humans, mitochondrial DNA (mtDNA) forms closed circular molecules that contain 16,569[4][5] DNA base pairs,[6] with each such molecule normally containing a full set of the mitochondrial genes. Each human mitochondrion contains, on average, approximately 5 such mtDNA molecules, with the quantity ranging between 1 and 15.[6] Each human cell contains approximately 100 mitochondria, giving a total number of mtDNA molecules per human cell of approximately 500.[6] The amount of mitochondria per cell also varies by cell type, with some examples being:
Egg cell: Mature metaphase II egg cells can contain 100,000 mitochondria, and 50,000–1,500,000 copies of the mitochondrial genome (corresponding to up to 90% of the egg cell DNA).[2]
Inheritance patterns
Because mitochondrial diseases (diseases due to malfunction of mitochondria) can be inherited both maternally and through chromosomal inheritance, the way in which they are passed on from generation to generation can vary greatly depending on the disease. Mitochondrial genetic mutations that occur in the nuclear DNA can occur in any of the chromosomes (depending on the species). Mutations inherited through the chromosomes can be autosomal dominant or recessive and can also be sex-linked dominant or recessive. Chromosomal inheritance follows normal Mendelian laws, despite the fact that the phenotype of the disease may be masked.
Because of the complex ways in which mitochondrial and nuclear DNA "communicate" and interact, even seemingly simple inheritance is hard to diagnose. A mutation in chromosomal DNA may change a protein that regulates (increases or decreases) the production of another certain protein in the mitochondria or the cytoplasm; this may lead to slight, if any, noticeable symptoms. On the other hand, some devastating mtDNA mutations are easy to diagnose because of their widespread damage to muscular, neural, and/or hepatic tissues (among other high-energy and metabolism-dependent tissues) and because they are present in the mother and all the offspring.
The number of affected mtDNA molecules inherited by a specific offspring can vary greatly because
the mitochondria within the fertilized oocyte is what the new life will have to begin with (in terms of mtDNA),
the number of affected mitochondria varies from cell (in this case, the fertilized oocyte) to cell depending both on the number it inherited from its mother cell and environmental factors which may favor mutant or wildtype mitochondrial DNA,
It is possible, even in twin births, for one baby to receive more than half mutant mtDNA molecules while the other twin may receive only a tiny fraction of mutant mtDNA molecules with respect to wildtype (depending on how the twins divide from each other and how many mutant mitochondria happen to be on each side of the division). In a few cases, some mitochondria or a mitochondrion from the sperm cell enters the oocyte but paternal mitochondria are actively decomposed.
Genes in the human mitochondrial genome are as follows.
Electron transport chain, and humanin
It was originally incorrectly believed that the mitochondrial genome contained only 13 protein-coding genes, all of them encoding proteins of the electron transport chain. However, in 2001, a 14th biologically active protein called humanin was discovered, and was found to be encoded by the mitochondrial gene MT-RNR2 which also encodes part of the mitochondrial ribosome (made out of RNA):
Unlike the other proteins, humanin does not remain in the mitochondria, and interacts with the rest of the cell and cellular receptors. Humanin can protect brain cells by inhibiting apoptosis. Despite its name, versions of humanin also exist in other animals, such as rattin in rats.
Mitochondrial DNA traditionally had the two strands of DNA designated the heavy and the light strand, due to their buoyant densities during separation in cesium chloride gradients,[8][9] which was found to be related to the relative G+T nucleotide content of the strand.[10] However, confusion of labeling of this strands is widespread, and appears to originate with an identification of the majority coding strand as the heavy in one influential article in 1999.[11][10] In humans, the light strand of mtDNA carries 28 genes and the heavy strand of mtDNA carries only 9 genes.[10][12] Eight of the 9 genes on the heavy strand code for mitochondrial tRNA molecules. Human mtDNA consists of 16,569 nucleotide pairs. The entire molecule is regulated by only one regulatory region which contains the origins of replication of both heavy and light strands. The entire human mitochondrial DNA molecule has been mapped[1][2].
Genetic code variants
The genetic code is, for the most part, universal, with few exceptions:[13] mitochondrial genetics includes some of these. For most organisms the "stop codons" are "UAA", "UAG", and "UGA". In vertebrate mitochondria "AGA" and "AGG" are also stop codons, but not "UGA", which codes for tryptophan instead. "AUA" codes for isoleucine in most organisms but for methionine in vertebrate mitochondrial mRNA.
There are many other variations among the codes used by other mitochondrial m/tRNA, which happened not to be harmful to their organisms, and which can be used as a tool (along with other mutations among the mtDNA/RNA of different species) to determine relative proximity of common ancestry of related species. (The more related two species are, the more mtDNA/RNA mutations will be the same in their mitochondrial genome).
Replication, repair, transcription, and translation
Mitochondrial replication is controlled by nuclear genes and is specifically suited to make as many mitochondria as that particular cell needs at the time.
Mitochondrial transcription in humans is initiated from three promoters, H1, H2, and L (heavy strand 1, heavy strand 2, and light strand promoters). The H2 promoter transcribes almost the entire heavy strand and the L promoter transcribes the entire light strand. The H1 promoter causes the transcription of the two mitochondrial rRNA molecules.[14]
When transcription takes place on the heavy strand a polycistronic transcript is created. The light strand produces either small transcripts, which can be used as primers, or one long transcript. The production of primers occurs by processing of light strand transcripts with the Mitochondrial RNase MRP (Mitochondrial RNA Processing). The requirement of transcription to produce primers links the process of transcription to mtDNA replication. Full length transcripts are cut into functional tRNA, rRNA, and mRNA molecules.[citation needed]
The process of transcription initiation in mitochondria involves three types of proteins: the mitochondrial RNA polymerase (POLRMT), mitochondrial transcription factor A (TFAM), and mitochondrial transcription factors B1 and B2 (TFB1M, TFB2M). POLRMT, TFAM, and TFB1M or TFB2M assemble at the mitochondrial promoters and begin transcription. The actual molecular events that are involved in initiation are unknown, but these factors make up the basal transcription machinery and have been shown to function in vitro.[citation needed]
Mitochondrial translation is still not very well understood. In vitro translations have still not been successful, probably due to the difficulty of isolating sufficient mt mRNA, functional mt rRNA, and possibly because of the complicated changes that the mRNA undergoes before it is translated.[citation needed]
Mitochondrial DNA polymerase
The Mitochondrial DNA Polymerase (Pol gamma, encoded by the POLG gene) is used in the copying of mtDNA during replication. Because the two (heavy and light) strands on the circular mtDNA molecule have different origins of replication, it replicates in a D-loop mode. One strand begins to replicate first, displacing the other strand. This continues until replication reaches the origin of replication on the other strand, at which point the other strand begins replicating in the opposite direction. This results in two new mtDNA molecules. Each mitochondrion has several copies of the mtDNA molecule and the number of mtDNA molecules is a limiting factor in mitochondrial fission. After the mitochondrion has enough mtDNA, membrane area, and membrane proteins, it can undergo fission (very similar to that which bacteria use) to become two mitochondria. Evidence suggests that mitochondria can also undergo fusion and exchange (in a form of crossover) genetic material among each other. Mitochondria sometimes form large matrices in which fusion, fission, and protein exchanges are constantly occurring. mtDNA shared among mitochondria (despite the fact that they can undergo fusion).[citation needed]
Damage and transcription error
Mitochondrial DNA is susceptible to damage from free oxygen radicals from mistakes that occur during the production of ATP through the electron transport chain. These mistakes can be caused by genetic disorders, cancer, and temperature variations. These radicals can damage mtDNA molecules or change them, making it hard for mitochondrial polymerase to replicate them. Both cases can lead to deletions, rearrangements, and other mutations. Recent evidence has suggested that mitochondria have enzymes that proofread mtDNA and fix mutations that may occur due to free radicals. It is believed that a DNA recombinase found in mammalian cells is also involved in a repairing recombination process. Deletions and mutations due to free radicals have been associated with the aging process. It is believed that radicals cause mutations which lead to mutant proteins, which in turn led to more radicals. This process takes many years and is associated with some aging processes involved in oxygen-dependent tissues such as brain, heart, muscle, and kidney. Auto-enhancing processes such as these are possible causes of degenerative diseases including Parkinson's, Alzheimer's, and coronary artery disease.[citation needed]
Chromosomally mediated mtDNA replication errors
Because mitochondrial growth and fission are mediated by the nuclear DNA, mutations in nuclear DNA can have a wide array of effects on mtDNA replication. Despite the fact that the loci for some of these mutations have been found on human chromosomes, specific genes and proteins involved have not yet been isolated. Mitochondria need a certain protein to undergo fission. If this protein (generated by the nucleus) is not present, the mitochondria grow but they do not divide. This leads to giant, inefficient mitochondria. Mistakes in chromosomal genes or their products can also affect mitochondrial replication more directly by inhibiting mitochondrial polymerase and can even cause mutations in the mtDNA directly and indirectly. Indirect mutations are most often caused by radicals created by defective proteins made from nuclear DNA.[citation needed]
Contribution of mitochondrial versus nuclear genome
In total, the mitochondrion hosts about 3000 different types of proteins, but only about 13 of them are coded on the mitochondrial DNA. Most of the 3000 types of proteins are involved in a variety of processes other than ATP production, such as porphyrin synthesis. Only about 3% of them code for ATP production proteins. This means most of the genetic information coding for the protein makeup of mitochondria is in chromosomal DNA and is involved in processes other than ATP synthesis. This increases the chances that a mutation that will affect a mitochondrion will occur in chromosomal DNA, which is inherited in a Mendelian pattern. Another result is that a chromosomal mutation will affect a specific tissue due to its specific needs, whether those may be high energy requirements or a need for the catabolism or anabolism of a specific neurotransmitter or nucleic acid. Because several copies of the mitochondrial genome are carried by each mitochondrion (2–10 in humans), mitochondrial mutations can be inherited maternally by mtDNA mutations which are present in mitochondria inside the oocyte before fertilization, or (as stated above) through mutations in the chromosomes.[citation needed]
Presentation
Mitochondrial diseases range in severity from asymptomatic to fatal, and are most commonly due to inherited rather than acquired mutations of mitochondrial DNA. A given mitochondrial mutation can cause various diseases depending on the severity of the problem in the mitochondria and the tissue the affected mitochondria are in. Conversely, several different mutations may present themselves as the same disease. This almost patient-specific characterization of mitochondrial diseases (see Personalized medicine) makes them very hard to accurately recognize, diagnose and trace. Some diseases are observable at or even before birth (many causing death) while others do not show themselves until late adulthood (late-onset disorders). This is because the number of mutant versus wildtype mitochondria varies between cells and tissues, and is continuously changing. Because cells have multiple mitochondria, different mitochondria in the same cell can have different variations of the mtDNA. This condition is referred to as heteroplasmy. When a certain tissue reaches a certain ratio of mutant versus wildtype mitochondria, a disease will present itself. The ratio varies from person to person and tissue to tissue (depending on its specific energy, oxygen, and metabolism requirements, and the effects of the specific mutation). Mitochondrial diseases are very numerous and different. Apart from diseases caused by abnormalities in mitochondrial DNA, many diseases are suspected to be associated in part by mitochondrial dysfunctions, such as diabetes mellitus,[15] forms of cancer[16] and cardiovascular disease, lactic acidosis,[17] specific forms of myopathy,[18]osteoporosis,[19]Alzheimer's disease,[20]Parkinsons's disease,[21]stroke,[22]male infertility[23] and which are also believed to play a role in the aging process.[24]
Use in forensics
Human mtDNA can also be used to help identify individuals.[25]Forensic laboratories occasionally use mtDNA comparison to identify human remains, and especially to identify older unidentified skeletal remains. Although unlike nuclear DNA, mtDNA is not specific to one individual, it can be used in combination with other evidence (anthropological evidence, circumstantial evidence, and the like) to establish identification. mtDNA is also used to exclude possible matches between missing persons and unidentified remains.[26] Many researchers believe that mtDNA is better suited to identification of older skeletal remains than nuclear DNA because the greater number of copies of mtDNA per cell increases the chance of obtaining a useful sample, and because a match with a living relative is possible even if numerous maternal generations separate the two.
Examples
American outlaw Jesse James's remains were identified using a comparison between mtDNA extracted from his remains and the mtDNA of the son of the female-line great-granddaughter of his sister.[27]
^Anderson, S.; Bankier, A. T.; Barrell, B. G.; de Bruijn, M. H. L.; Coulson, A. R.; Drouin, J.; Eperon, I. C.; Nierlich, D. P.; Roe, B. A.; Sanger, F.; Schreier, P. H.; Smith, A. J. H.; Staden, R.; Young, I. G. (April 1981). "Sequence and organization of the human mitochondrial genome". Nature. 290 (5806): 457–465. Bibcode:1981Natur.290..457A. doi:10.1038/290457a0. PMID7219534. S2CID4355527.
^ abcSatoh, M; Kuroiwa, T (September 1991). "Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell". Experimental Cell Research. 196 (1): 137–140. doi:10.1016/0014-4827(91)90467-9. PMID1715276.
^ abcBarroso Lima, Nicholas Costa; Prosdocimi, Francisco (17 February 2018). "The heavy strand dilemma of vertebrate mitochondria on genome sequencing age: number of encoded genes or G + T content?". Mitochondrial DNA Part A. 29 (2): 300–302. doi:10.1080/24701394.2016.1275603. PMID28129726. S2CID20552678.
^Anderson, S.; Bankier, A. T.; Barrell, B. G.; de Bruijn, M. H. L.; Coulson, A. R.; Drouin, J.; Eperon, I. C.; Nierlich, D. P.; Roe, B. A.; Sanger, F.; Schreier, P. H.; Smith, A. J. H.; Staden, R.; Young, I. G. (1981). "Sequence and organization of the human mitochondrial genome". Nature. 290 (5806): 457–65. Bibcode:1981Natur.290..457A. doi:10.1038/290457a0. PMID7219534. S2CID4355527.
^"The Genetic Codes". www.ncbi.nlm.nih.gov. National Center for Biotechnology Information. Retrieved 16 March 2019.
^Asin-Cayuela, Jordi; Gustafsson, Claes M. (2007). "Mitochondrial transcription and its regulation in mammalian cells". Trends in Biochemical Sciences. 32 (3): 111–17. doi:10.1016/j.tibs.2007.01.003. PMID17291767.
^Goto, Y (September 1993). "[MELAS (mitochondrial myopathy, encephalopathy lactic acidosis, and stroke-like episodes): clinical features and mitochondrial DNA mutations]". Nihon Rinsho. Japanese Journal of Clinical Medicine. 51 (9): 2373–8. PMID8411715.
^Stone, Anne C.; Starrs, James E.; Stoneking, Mark (1 January 2001). "Mitochondrial DNA Analysis of the Presumptive Remains of Jesse James". Journal of Forensic Sciences. 46 (1): 173–6. doi:10.1520/JFS14932J. PMID11210907. S2CID6480921.
^ abGill, Peter; Ivanov, Pavel L.; Kimpton, Colin; Piercy, Romelle; Benson, Nicola; Tully, Gillian; Evett, Ian; Hagelberg, Erika; Sullivan, Kevin (February 1994). "Identification of the remains of the Romanov family by DNA analysis". Nature Genetics. 6 (2): 130–135. doi:10.1038/ng0294-130. PMID8162066. S2CID33557869.
لمعانٍ أخرى، طالع بيت مراد (توضيح). قرية بيت مراد - قرية - تقسيم إداري البلد اليمن المحافظة محافظة حجة المديرية مديرية قفل شمر العزلة عزلة شمرين السكان التعداد السكاني 2004 السكان 484 • الذكور 248 • الإناث 236 • عدد الأسر 53 • عدد المساكن 39 معلو�...
موتور عشاير خليل توكلي موتورعشايرخليل توكلي - قرية - تقسيم إداري البلد إيران المحافظة كرمان المقاطعة عنبر أباد الناحية ناحية جنوب جبال بارز القسم الريفي قسم غرمسار الریفي السكان التعداد السكاني 49 نسمة (إحصاء 2006) معلومات أخرى التوقيت توقيت إيران (+3:30 غرينيتش) ت
Польська математична школа (пол. Polska szkoła matematyczna) - назва груп математиків, що працювали у Польщі міжвоєнного періоду 1920-х та 1930-х років. Львівські математики 1930 Зміст 1 Історія 2 Джерела 3 Посилання 4 Див. також Історія Математики були зосереджені у трьох центрах: Львівська ма
ЛуверньїLouvergny Країна Франція Регіон Гранд-Ест Департамент Арденни Округ Вузьє Кантон Ле-Шен Код INSEE 08261 Поштові індекси 08390 Координати 49°33′10″ пн. ш. 4°44′25″ сх. д.H G O Висота 172 - 249 м.н.р.м. Площа 8,95 км² Населення 75 (2011-01-01) Густота 8,38 ос./км² Розміщення Вла
Emebet Anteneh Data urodzenia 13 stycznia 1992 Dorobek medalowy Reprezentacja Etiopia Mistrzostwa świata w biegach przełajowych złoto Amman 2009 drużyna juniorek złoto Punta Umbría 2011 drużyna juniorek srebro Bydgoszcz 2010 drużyna juniorek Emebet Anteneh (ur. 13 stycznia 1992 w Gojjam) – etiopska lekkoatletka specjalizująca się w biegach długich. Trzykrotnie startowała w przełajowych mistrzostwach świata zdobywając trzy medale w rywalizacji drużyn juniorek (z
International border Map of the India-Myanmar border (the areas marked Pakistan are part of present-day Bangladesh) The India–Myanmar border is the international border between India and Myanmar (formerly Burma). The border is 1,643 kilometres (1,021 mi) in length and runs from the tripoint with China in the north to the tripoint with Bangladesh in the south.[1] Background Description The precise location of the tripoint with China is unclear owing to the Sino-Indian border dis...
Pour les articles homonymes, voir Devic. Cet article est une ébauche concernant un monument culturel serbe et un monastère. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Monastère de Devič Le monastère de Devič Présentation Nom local Манастир ДевичManastir Devič Culte Église orthodoxe serbe Type Monastère Rattachement éparchie de Ras-Prizren Début de la construction XVe siècle Pro...
Gyeongsun dari Silla Gyeongsun dari SillaHangul경순왕 Hanja敬順王 Alih AksaraGyeongsun wangMcCune–ReischauerKyŏngsun wangNama lahirHangul김부 Hanja金傅 Alih AksaraGim BuMcCune–ReischauerKim Pu Gyeongsun dari Silla (meninggal 978) (bertahkta 927–935) merupakan raja ke-56 dan yang terakhir memerintah di Kerajaan Silla. Keturunan generasi ke-6 Raja Munseong, ia merupakan putra Hyojong dengan Putri Gyea, yang adalah putri Raja Heongang. Istrinya adalah Nyonya Jukbang (죽방부�...
Sebuah pohon biner sederhana dengan lebar 9 dan tinggi 3, dengan sebuah akar yang memiliki nilai 2 Dalam ilmu komputer, sebuah pohon biner (binary tree) adalah sebuah pohon struktur data di mana setiap simpul memiliki paling banyak dua anak. Secara khusus anaknya dinamakan kiri dan kanan. Penggunaan secara umum pohon biner adalah Pohon biner terurut, yang lainnnya adalah heap biner. Dalam ilmu komputer, sebuah pohon biner adalah struktur data pohon di mana setiap node memiliki paling banyak d...
العبودية في الولايات المتحدةمعلومات عامةصنف فرعي من عبوديةAfrican slave trade (en) البداية 4 يوليو 1776 البلد الولايات المتحدة تسبب في الحرب الأهلية الأمريكية لديه جزء أو أجزاء United States slave trade (en) الرق في الولايات المتحدة الاستعمارية تعديل - تعديل مصدري - تعديل ويكي بيانات بيتر، أحد العبي
اضغط هنا للاطلاع على كيفية قراءة التصنيف أيل أبيض الذيل حالة الحفظ أنواع غير مهددة أو خطر انقراض ضعيف جدا[1] المرتبة التصنيفية نوع[2] التصنيف العلمي فوق النطاق حيويات مملكة عليا حقيقيات النوى مملكة حيوان عويلم ثنائيات التناظر مملكة فرعية&...
Science museum in Ankara, TurkeyMETU Science and Technology MuseumODTÜ Bilim ve Teknoloji MüzesiLocation of Feza Gürsey Science CenterEstablished2003LocationAnkara, TurkeyCoordinates39°54′07″N 32°46′19″E / 39.902°N 32.772°E / 39.902; 32.772TypeScience museum METU Science and Technology Museum (Turkish: ODTÜ Bilim ve Teknoloji Müzesi) is a museum established within the campus of the Middle East Technical University, Ankara, Turkey. The museum is aimed t...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Suakoko District – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Location of Suakoko District in Bong County Suakoko District (commonly spelled Suacoco abroad) is one of eight districts located ...
Distributor of eBooks and other digital media JSTORType of siteDigital libraryAvailable inEnglish (includes content in other languages)OwnerIthaka Harbors, Inc.[1]Created byAndrew W. Mellon FoundationFounder(s)William G. BowenURLjstor.orgRegistrationYesLaunched1994; 29 years ago (1994)Current statusActiveOCLC number46609535 LinksWebsitewww.jstor.org Title list(s)support.jstor.org/hc/en-us/articles/115007466248-JSTOR-Title-Lists JSTOR (/ˈdʒeɪst�...
1996 studio album by LindaVoronaВоронаStudio album by LindaReleasedDecember 3, 1996RecordedJune - August 1996GenreAlternative rock, folk rock, trip hop, indie-rockLength53:09LabelKristal'naya MuzykaProducerMaxim FadeevLinda chronology Tantsi tibetskikh lam(1994) VoronaВорона(1996) Vorona. Remake. Remix(1997) Singles from Vorona Krug ot rukiReleased: 1995 (1995) Severniy veterReleased: September 1996 (1996-09) VoronaReleased: November 1996 (1996-11)...
American trampoline gymnast Logan DooleyCountry representedUSABorn (1987-09-26) September 26, 1987 (age 36)HometownLake Forest, California, U.S.Height5 ft 9 in (175 cm)DisciplineTrampolineLevelSenior EliteYears on national teamUSAClubWorld Elite Gymnastics[1]Head coach(es)Robert Null Medal record Men's trampoline gymnastics Representing the United States Pan American Championships 2014 Mississauga Synchro 2010 Daytona Beach Synchro 2010 Daytona Beach Tea...
LebakbarangKecamatanPeta lokasi Kecamatan LebakbarangNegara IndonesiaProvinsiJawa TengahKabupatenPekalonganPopulasi • Total11.116 jiwa (BPS 2.020)[1] jiwaKode Kemendagri33.26.03 Kode BPS3326030 Luas58.20 km²Desa/kelurahan11 Lebakbarang (Jawa: ꦭ꧀ꦭꦼꦧꦏ꧀ꦧꦫꦁ, translit. Lebakbarang) adalah sebuah kecamatan di Kabupaten Pekalongan, Provinsi Jawa Tengah, Indonesia. Kecamatan ini berjarak sekitar 20 Km dari ibu kota Kabupaten Pekalongan ke arah te...
Indian folk singer Not to be confused with Bhanwari Devi, Indian social worker Bhanwari DeviBhanwari DeviBackground informationBirth nameBhanwari DeviBorn1964Rajasthan, IndiaGenresRajasthani folk musicOccupation(s)Folk singerMusical artist Bhanwari Devi (born 1964) is a folk singer from Rajasthan, India. She belongs to the Bhopa community, and has gained wide recognition for her performances of traditional and folk music from Rajasthan.[1] Career Devi is one of the first women from th...
33rd running of the Kentucky Derby 33rd Kentucky DerbyKentucky DerbyGrade I stakes racePink Star and jockey Andy Minder after their win in the 1907 Kentucky DerbyLocationChurchill DownsDateMay 6, 1907Winning horsePink StarJockeyAndy MinderTrainerWilliam H. FizerOwnerJ. Hal WoodfordSurfaceDirt← 19061908 → The 1907 Kentucky Derby was the 33rd running of the Kentucky Derby. The race took place on May 6, 1907, over a muddy track.[1] The field was reduced to six compe...
Cook Islands national badminton team Cook IslandsAssociationBadminton Association of The Cook Islands Inc.ConfederationBadminton OceaniaPresidentThomas Mereana-NgauruBWF rankingCurrent ranking113 (4 April 2023)Highest ranking94 (3 April 2015)Oceania Mixed Team ChampionshipsAppearances1 (first in 2023)Best resultFourth place (2023) The Cook Islands national badminton team (Cook Islands Māori: Te kapa badminton srot a motu o nga Kūki ʻĀirani) represents the Cook Islands, a self-governing is...