Netlink is designed and used for transferring miscellaneous networking information between the kernel space and userspace processes. Networking utilities, such as the iproute2 family and the utilities used for configuring mac80211-based wireless drivers, use Netlink to communicate with the Linux kernel from userspace. Netlink provides a standard socket-based interface for userspace processes, and a kernel-side API for internal use by kernel modules. Originally, Netlink used the AF_NETLINKsocket family.
Netlink is designed to be a more flexible successor to ioctl; RFC 3549 describes the protocol in detail.
History
Netlink was created by Alexey Kuznetsov[4] as a more flexible alternative to the sophisticated but awkward ioctl communication method used for setting and getting external socket options. The Linux kernel continues to support ioctl for backward compatibility.
Netlink was first provided in the 2.0 series of the Linux kernel, implemented as a character device. By 2013, this interface is obsolete, but still forms an ioctl communication method; compare the use of rtnetlink.[5] The Netlink socket interface appeared in 2.2 series of the Linux kernel.
In 2022, experimental support for the Netlink protocol was added to FreeBSD. Initially, only a subset of the NETLINK_ROUTE family and NETLINK_GENERIC is supported.[2]
Packet structure
Bit offset
0–15
16–31
0
Message length
32
Type
Flags
64
Sequence number
96
PID
128+
Data
Unlike BSD sockets using Internet protocols such as TCP, where the message headers are autogenerated, the Netlink message header (available as struct nlmsghdr) must be prepared by the caller. The Netlink socket generally works in a SOCK_RAW-like mode, even if SOCK_DGRAM was used to create it.
The data portion then contains a subsystem-specific message that may be further nested.
Netlink socket families
The AF_NETLINK family offers multiple protocol subsets. Each interfaces to a different kernel component and has a different messaging subset. The subset is referenced by the protocol field in the socket call:
int socket(AF_NETLINK, SOCK_DGRAM or SOCK_RAW, protocol)
Lacking a standard, SOCK_DGRAM and SOCK_RAW are not guaranteed to be implemented in a given Linux (or other OS) release. Some sources state that both options are legitimate, and the reference below from Red Hat states that SOCK_RAW is always the parameter. However, iproute2 uses both interchangeably.
Netlink protocols
A non-exhaustive list of the supported protocol entries follows:
NETLINK_ROUTE
NETLINK_ROUTE provides routing and link information. This information is used primarily for user-space routing daemons. Linux implements a large subset of messages:
Link layer: RTM_NEWLINK, RTM_DELLINK, RTM_GETLINK, RTM_SETLINK
NETLINK_KOBJECT_UEVENT provides the interface in which the kernel broadcasts uevents, typically consumed by udev.
NETLINK_GENERIC
One of the drawbacks of the Netlink protocol is that the number of protocol families is limited to 32 (MAX_LINKS).This is one of the main reasons that the generic Netlink family was created—to provide support for adding a higher number of families. It acts as a Netlink multiplexer and works with a single Netlink family NETLINK_GENERIC. The generic Netlink protocol is based on the Netlink protocol and uses its API.
User-defined Netlink protocol
Users can add a Netlink handler in their own kernel routines. This allows the development of additional Netlink protocols to address new kernel modules.[6]
libnl - Netlink Protocol Library Suite – Netlink Protocol Library Suite – full functional library covering almost all aspects of working with Netlink sockets