Share to: share facebook share twitter share wa share telegram print page

Ordinal date

Today's date (UTC) expressed according to ISO 8601 [refresh]
Date2024-11-29
Ordinal date2024-334
Mission control center's board with time data, displaying universal time with ordinal date (without year) prepended, on 22nd October 2013 (i.e. 2013-295)

An ordinal date is a calendar date typically consisting of a year and an ordinal number, ranging between 1 and 366 (starting on January 1), representing the multiples of a day, called day of the year or ordinal day number (also known as ordinal day or day number). The two parts of the date can be formatted as "YYYY-DDD" to comply with the ISO 8601 ordinal date format. The year may sometimes be omitted, if it is implied by the context; the day may be generalized from integers to include a decimal part representing a fraction of a day.

Nomenclature

Ordinal date is the preferred name for what was formerly called the "Julian date" or JD, or JDATE, which still seen in old programming languages and spreadsheet software. The older names are deprecated because they are easily confused with the earlier dating system called 'Julian day number' or JDN, which was in prior use and which remains ubiquitous in astronomical and some historical calculations.

The U.S. military sometimes uses a system they call the "Julian date format",[1] which indicates the year and the day number (out of the 365 or 366 days of the year). For example, "11 December 1999" can be written as "1999345" or "99345", for the 345th day of 1999.[2]

Calculation

Computation of the ordinal day within a year is part of calculating the ordinal day throughout the years from a reference date, such as the Julian date. It is also part of calculating the day of the week, though for this purpose modulo 7 simplifications can be made.

In the following text, several algorithms for calculating the ordinal day O are presented. The inputs taken are integers y, m and d, for the year, month, and day numbers of the Gregorian or Julian calendar date.

Trivial methods

The most trivial method of calculating the ordinal day involves counting up all days that have elapsed per the definition:

  1. Let O be 0.
  2. From i = 1 .. m - 1, add the length of month i to O, taking care of leap year according to the calendar used.
  3. Add d to O.

Similarly trivial is the use of a lookup table, such as the one referenced.[3]

Zeller-like

The table of month lengths can be replaced following the method of encoding the month-length variation in Zeller's congruence. As in Zeller, the m is changed to m + 12 if m ≤ 2. It can be shown (see below) that for a month-number m, the total days of the preceding months is equal to ⌊(153 * (m − 3) + 2) / 5⌋. As a result, the March 1-based ordinal day number is OMar = ⌊(153 × (m − 3) + 2) / 5⌋ + d.

The formula reflects the fact that any five consecutive months in the range March–January have a total length of 153 days, due to a fixed pattern 31–30–31–30–31 repeating itself twice. This is similar to encoding of the month offset (which would be the same sequence modulo 7) in Zeller's congruence. As 153/5 is 30.6, the sequence oscillates in the desired pattern with the desired period 5.

To go from the March 1 based ordinal day to a January 1 based ordinal day:

  • For m ≤ 12 (March through December), O = OMar + 59 + isLeap(y) , where isLeap is a function returning 0 or 1 depending whether the input is a leap year.
  • For January and February, two methods can be used:
    1. The trivial method is to skip the calculation of OMar and go straight for O = d for January and O = d + 31 for February.
    2. The less redundant method is to use O = OMar − 306, where 306 is the number of dates in March through December. This makes use of the fact that the formula correctly gives a month-length of 31 for January.

"Doomsday" properties:

With and gives

giving consecutive differences of 63 (9 weeks) for n = 2, 3, 4, 5, and 6, i.e., between 4/4, 6/6, 8/8, 10/10, and 12/12.

and gives

and with m and d interchanged

giving a difference of 119 (17 weeks) for n = 2 (difference between 5/9 and 9/5), and also for n = 3 (difference between 7/11 and 11/7).

Table

To the day of 13
Jan
14
Feb
3
Mar
4
Apr
5
May
6
Jun
7
Jul
8
Aug
9
Sep
10
Oct
11
Nov
12
Dec
i
Add 0 31 59 90 120 151 181 212 243 273 304 334 3
Leap years 0 31 60 91 121 152 182 213 244 274 305 335 2
Algorithm

For example, the ordinal date of April 15 is 90 + 15 = 105 in a common year, and 91 + 15 = 106 in a leap year.

Month–day

The number of the month and date is given by

the term can also be replaced by with the ordinal date.

  • Day 100 of a common year:
April 10.
  • Day 200 of a common year:
July 19.
  • Day 300 of a leap year:
November - 5 = October 26 (31 - 5).

Helper conversion table

ord.
date
common
year
leap
year
001 01 Jan
010 10 Jan
020 20 Jan
030 30 Jan
032 01 Feb
040 09 Feb
050 19 Feb
060 01 Mar 29 Feb
061 02 Mar 01 Mar
070 11 Mar 10 Mar
080 21 Mar 20 Mar
090 31 Mar 30 Mar
091 01 Apr 31 Mar
092 02 Apr 01 Apr
100 10 Apr 09 Apr
ord.
date
comm.
year
leap
year
110 20 Apr 19 Apr
120 30 Apr 29 Apr
121 01 May 30 Apr
122 02 May 01 May
130 10 May 09 May
140 20 May 19 May
150 30 May 29 May
152 01 Jun 31 May
153 02 Jun 01 Jun
160 09 Jun 08 Jun
170 19 Jun 18 Jun
180 29 Jun 28 Jun
182 01 Jul 30 Jun
183 02 Jul 01 Jul
190 09 Jul 08 Jul
ord.
date
comm.
year
leap
year
200 19 Jul 18 Jul
210 29 Jul 28 Jul
213 01 Aug 31 Jul
214 02 Aug 01 Aug
220 08 Aug 07 Aug
230 18 Aug 17 Aug
240 28 Aug 27 Aug
244 01 Sep 31 Aug
245 02 Sep 01 Sep
250 07 Sep 06 Sep
260 17 Sep 16 Sep
270 27 Sep 26 Sep
274 01 Oct 30 Sep
275 02 Oct 01 Oct
280 07 Oct 06 Oct
ord.
date
comm.
year
leap
year
290 17 Oct 16 Oct
300 27 Oct 26 Oct
305 01 Nov 31 Oct
306 02 Nov 01 Nov
310 06 Nov 05 Nov
320 16 Nov 15 Nov
330 26 Nov 25 Nov
335 01 Dec 30 Nov
336 02 Dec 01 Dec
340 06 Dec 05 Dec
350 16 Dec 15 Dec
360 26 Dec 25 Dec
365 31 Dec 30 Dec
366 31 Dec

See also

References

  1. ^ Hynes, John. "A summary of time formats and standards". www.decimaltime.hynes.net. Retrieved 2011-02-09.
  2. ^ "International standard date and time notation". Department of Computer Science and Technology, University of Cambridge. Retrieved 2024-05-01.
  3. ^ "Table of ordinal day number for various calendar dates". Retrieved 2021-04-08.

Read other articles:

Sheryl Lee RalphRalph tahun 2008Lahir30 Desember 1956 (umur 66)Waterbury, Connecticut, Amerika SerikatNama lainSheryl L. RalphPekerjaanAktrispenyanyiTahun aktif1977–sekarangSuami/istriEric Maurice ​ ​(m. 1990; c. 2001)​ Vincent Hughes ​(m. 2005)​Anak2Situs websherylleeralph.com Sheryl Lee Ralph (lahir 30 Desember 1956) adalah seorang aktris dan penyanyi asal Amerika Serikat. Ia membuat debut layarnya...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Persatuan Astronomi Internasional – berita · surat kabar · buku · cendekiawan · JSTOR Artikel ini bukan mengenai Federasi Astronautika Internasional. IAU beralih ke halaman ini. Untuk kegunaan lain, liha...

 

2002 studio album by KHMGameStudio album by KHMReleasedNovember 19, 2002Recorded2002StudioThe Crack House West (Hollywood, CA)The Flower Shop (Hollywood, CA)The Silent Sound Studios (Hollywood, CA)GenreUnderground hip hopLength53:26LabelNumber 6 RecordsProducerDarrick Angelone (exec.)Marc Live (also exec.)Kool Keith (also exec.)H-Bomb aka Jacky Jasper (also exec.)KHM/Clayborne Family chronology Game(2002) Clayborne Family(2004) Kool Keith chronology Spankmaster(2001) Game(2002) Kool K...

Species of fish Honeycomb grouper Epinephelus merra from French Polynesia Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Perciformes Family: Serranidae Subfamily: Epinephelinae Genus: Epinephelus Species: E. merra Binomial name Epinephelus merraBloch, 1793 Synonyms[2] Cephalopholis merra (Bloch, 1793) Serranus merra (Bloch, 1793) The honeycomb grouper (Epineph...

 

Bandar Udara Internasional Jibouti-AmbouliIATA: JIBICAO: HDAMInformasiJenisPublik/MiliterLokasiKota JiboutiZona waktuUTC+3Koordinat{{{coordinates}}} Bandar Udara Internasional Jibouti-Ambouli (IATA: JIB, ICAO: HDAM) adalah sebuah bandara gabungan militer dan sipil yang berada di Kota Jibouti, Jibuti. Militer Sebagai tambahan dari fungsinya sebagai bandara sipil, organisasi militer di bawah juga berbasis di Bandar Udara Internasional Jibouti-Ambouli: Militer Prancis 13th Demi-Brigade of t...

 

Nama ini menggunakan cara penamaan Spanyol: nama keluarga pertama atau paternalnya adalah Solana dan nama keluarga kedua atau maternalnya adalah de Madariaga. Javier SolanaJavier Solana pada 1999Perwakilan Tingkat Tinggi untuk Kebijakan Keamanan dan Luar NegeriMasa jabatan18 Oktober 1999 – 1 Desember 2009PendahuluJürgen TrumpfPenggantiCathy Ashton (Urusan Luar Negeri dan Kebijakan Keamanan)Sekretaris-Jenderal Dewan Uni EropaMasa jabatan18 Oktober 1999 – 1 Desember ...

De Tweede Liberiaanse Burgeroorlog was een burgeroorlog in het Afrikaanse land Liberia die volgde op de Eerste Liberiaanse Burgeroorlog. Deze oorlog begon in 1999, toen de rebellenbeweging Liberians United for Reconciliation and Democracy (LURD), met steun van de regering van Guinee, door middel van een staatsgreep de leiding overnam in het noorden van Liberia. In het voorjaar van 2003 nam een andere groepering - de Movement for Democracy in Liberia - de macht over in het zuiden. Als gevolg h...

 

This article is about Renfrew, Renfrew County, Ontario, Canada; the town. For other uses, see Renfrew (disambiguation). Town in Ontario, CanadaRenfrewTown (lower-tier)Town of RenfrewRaglan Street in the centre of RenfrewRenfrewLocation of Renfrew in the province of OntarioShow map of Renfrew CountyRenfrewRenfrew (Southern Ontario)Show map of Southern OntarioCoordinates: 45°28′18″N 76°40′59″W / 45.47167°N 76.68306°W / 45.47167; -76.68306Country CanadaPr...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2018) لقد عرفت مشكلة تلوث الماء منذ زمن بعيد، ومن أوائل الدلائل التاريخية ما وصف عن تحول مياه النيل إلى اللون الأحمر في فترات معينة من السنة. يعتبر المجرى المائي ملو

Émile Gallémile Gallé, (1889) Foto untuk kartu masuk ke Pameran Paris 1889Lahir8 May 1846 (1846-05-08)Nancy, PrancisMeninggal23 September 1904 (1904-09-24) (aged 58)Nancy, PrancisPekerjaanGlass artist Émile Gallé (8 Mei 1846 – 23 September 1904) adalah seorang seniman dan desainer Prancis yang bekerja di kaca, dan dianggap sebagai salah satu inovator utama dalam gerakan Art Nouveau Prancis. Dia terkenal karena desainnya seni kaca Art Nouveau dan furnitur Ar...

 

In Oslo liggen of lagen de onderstaande ijsbanen. Valle Hovin kunstisbane Valle Hovin kunstisbane De voorgevel van het voetbalstadion Intility Arena op de achtergrond. De Valle Hovin kunstisbane op de voorgrond. Plaats Oslo Land  Noorwegen Hoogte 92 meter boven zeeniveau Type Openlucht, kunstijsbaan Lengte 400m Gebruiker Aktiv Skøyteklubb Geopend in 1966 Website www.vallehovin.no Baanrecords - mannen 500m Ådne Søndrål  36,02 1000m Ådne Søndrål  1.11,86 1500m Kjetil Stian...

 

Kaart met de voormalige Japanse provincies (1868) met Tsushima in het rood Tsushima (対馬国, Tsushima-no kuni) is een voormalige provincie van Japan, gelegen in de huidige prefectuur Nagasaki. Het lag op het gelijknamige eiland Tsushima. Districten Kamiagata (上県) Shimoagata (下県) Externe links Het koninkrijk Tsuikai, 魏志倭人, tekst in het Japans Tsushima in de Wa volksgeschiedenis, tekst in het Japans · · Provincies van Japan Aki · Awa (Kanto) · Awa (Shikoku) · Awaji · Bi...

Village in West Pomeranian Voivodeship, PolandBiałaVillageBiałaShow map of PolandBiałaShow map of West Pomeranian VoivodeshipCoordinates: 53°50′45″N 16°49′46″E / 53.84583°N 16.82944°E / 53.84583; 16.82944Country PolandVoivodeshipWest PomeranianCountySzczecinekGminaBiały BórPopulation150Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST)Vehicle registrationZSZ Biała [ˈbjawa] is a village in the administrative district of Gmina Biały Bór, wit...

 

Cinema City Enterprises Co.IndustryEntertainmentFounded1979; 44 years ago (1979) (as Warriors Film Company)FounderRaymond Wong Karl Maka Dean ShekDefunct1991; 32 years ago (1991)FateRenamed to Mandarin FilmsHeadquartersHong KongProductsMotion pictures Cinema City Enterprises Ltd (Chinese: 新藝城企業有限公司) also known as Cinema Capital Entertainment and Cinema City Entertainment, formerly Cinema City and Films Co. and Cinema City Company Limit...

 

Japanese video game developer Japan StudioNative nameJAPANスタジオTypeDivisionIndustryVideo gamesFounded16 November 1993; 30 years ago (1993-11-16)Defunct1 April 2021 (2021-04-01)FateMerged into Team Asobi and other studiosSuccessorTeam AsobiHeadquartersTokyo, JapanProductsApe EscapeThe Legend of DragoonIcoEverybody's GolfWild ArmsShadow of the ColossusSirenLocoRocoPataponGravity RushKnackThe Last GuardianParentSony Interactive Entertainment Japan Studio w...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Futsal in Australia – news · newspapers · books · scholar · JSTOR (June 2011) (Learn how and when to remove this template message) This article needs add...

 

2023 studio album by James BlakePlaying Robots into HeavenStudio album by James BlakeReleased8 September 2023 (2023-09-08)Recorded2019-2023GenreElectronicdanceexperimentaltrip hopLength42:39Label Republic Polydor ProducerJames BlakeJames Blake chronology Wind Down(2022) Playing Robots into Heaven(2023) Singles from Playing Robots into Heaven Big HammerReleased: 28 June 2023 LoadingReleased: 26 July 2023 Tell MeReleased: 7 September 2023 Playing Robots into Heaven is the...

 

Place du marché d'Hakaniemi La place du marché de Hakaniemi Situation Coordonnées 60° 10′ 44″ nord, 24° 57′ 04″ est Pays Finlande Ville Helsinki Quartier(s) Kallio Morphologie Type Place Fonction(s) urbaine(s) Marché Histoire Monuments Ympyrätalo ; Halle du marché de Hakaniemi Géolocalisation sur la carte : Finlande modifier  Place du marché d'Hakaniemi (en finnois : Hakaniemen tori, en suédois : Hagnäs torg) est une p...

Critically Endangered species of small Asian rhinoceros Hairy rhinoceros redirects here. For the extinct megafauna, see woolly rhinoceros. Sumatran rhinocerosTemporal range: Early Pleistocene–Recent PreꞒ Ꞓ O S D C P T J K Pg N ↓ Sumatran rhinoceros at Sumatran Rhino Sanctuary in Lampung, Indonesia Conservation status Critically Endangered (IUCN 3.1)[2] CITES Appendix I (CITES)[2] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chorda...

 

Indian police officer Navniet SekeraBorn (1971-10-22) 22 October 1971 (age 52)Shikohabad, Firozabad, Uttar Pradesh, IndiaEducationB.E. (Computer Science), MBAAlma materIIT Roorkee, Indian School of BusinessOccupation(s)Additional Director General (ADG) of Police, Uttar PradeshYears active1996–presentEmployerGovernment of IndiaOrganizationIndian Police ServiceSpouseDr. Pooja ThakurChildren2Awards President's Police Medal for Distinguished Service (2005)[1][2] H...

 
Kembali kehalaman sebelumnya