Share to: share facebook share twitter share wa share telegram print page

Risk of ruin

Risk of ruin is a concept in gambling, insurance, and finance relating to the likelihood of losing all one's investment capital or extinguishing one's bankroll below the minimum for further play.[1] For instance, if someone bets all their money on a simple coin toss, the risk of ruin is 50%. In a multiple-bet scenario, risk of ruin accumulates with the number of bets: each play increases the risk, and persistent play ultimately yields the stochastic certainty of gambler's ruin.

Finance

Risk of ruin for investors

Two leading strategies for minimising the risk of ruin are diversification and hedging/portfolio optimization.[2] An investor who pursues diversification will try to own a broad range of assets – they might own a mix of shares, bonds, real estate and liquid assets like cash and gold. The portfolios of bonds and shares might themselves be split over different markets – for example a highly diverse investor might like to own shares on the LSE, the NYSE and various other bourses. So even if there is a major crash affecting the shares on any one exchange, only a part of the investors holdings should suffer losses. Protecting from risk of ruin by diversification became more challenging after the financial crisis of 2007–2010 – at various periods during the crises, until it was stabilised in mid-2009, there were periods when asset classes correlated in all global regions. For example, there were times when stocks and bonds [3] fell at once – normally when stocks fall in value, bonds will rise, and vice versa. Other strategies for minimising risk of ruin include carefully controlling the use of leverage and exposure to assets that have unlimited loss when things go wrong (e.g., Some financial products that involve short selling can deliver high returns, but if the market goes against the trade, the investor can lose significantly more than the price they paid to buy the product.)

The probability of ruin is approximately

,

where

for a random walk with a starting value of s, and at every iterative step, is moved by a normal distribution having mean μ and standard deviation σ and failure occurs if it reaches 0 or a negative value. For example, with a starting value of 10, at each iteration, a Gaussian random variable having mean 0.1 and standard deviation 1 is added to the value from the previous iteration. In this formula, s is 10, σ is 1, μ is 0.1, and so r is the square root of 1.01, or about 1.005. The mean of the distribution added to the previous value every time is positive, but not nearly as large as the standard deviation, so there is a risk of it falling to negative values before taking off indefinitely toward positive infinity. This formula predicts a probability of failure using these parameters of about 0.1371, or a 13.71% risk of ruin. This approximation becomes more accurate when the number of steps typically expected for ruin to occur, if it occurs, becomes larger; it is not very accurate if the very first step could make or break it. This is because it is an exact solution if the random variable added at each step is not a Gaussian random variable but rather a binomial random variable with parameter n=2. However, repeatedly adding a random variable that is not distributed by a Gaussian distribution into a running sum in this way asymptotically becomes indistinguishable from adding Gaussian distributed random variables, by the law of large numbers.

Financial trading

The term "risk of ruin" is sometimes used in a narrow technical sense by financial traders to refer to the risk of losses reducing a trading account below minimum requirements to make further trades.[4] Random walk assumptions permit precise calculation of the risk of ruin for a given number of trades. For example, assume one has $1000 available in an account that one can afford to draw down before the broker will start issuing margin calls. Also, assume each trade can either win or lose, with a 50% chance of a loss, capped at $200. Then for four trades or less, the risk of ruin is zero. For five trades, the risk of ruin is about 3% since all five trades would have to fail for the account to be ruined. For additional trades, the accumulated risk of ruin slowly increases. Calculations of risk become much more complex under a realistic variety of conditions. To see a set of formulae to cover simple related scenarios, see Gambler's ruin (with Markov chain). Opinions among traders about the importance of the "risk of ruin" calculations are mixed; some[who?] advise that for practical purposes it is a close to worthless statistic, while others[who?] say it is of the utmost importance for an active trader.[5][6]

See also

Notes and references

  1. ^ Zenios, Ziemba (2006). Handbook of Asset and Liability Management (1st ed.). p. 388. ISBN 978-0-444-53248-0.
  2. ^ Taranto, Aldo; Khan, Shahjahan (2020). "Gambler's ruin problem and bi-directional grid constrained trading and investment strategies" (PDF). Investment Management and Financial Innovations. 17 (3): 54–66. doi:10.21511/imfi.17(3).2020.05. eISSN 1812-9358. ISSN 1810-4967 – via University of Southern Queensland-EPrints.
  3. ^ Though US treasuries were generally an exception, except on the very worst days their value generally rose, as part of the "Flight to safety".
  4. ^ Gregoriou, Greg N.; Douglas Rouah, Fabrice (2009-03-03). "22. A Risk of Ruin Approach for Evaluating Commodity Trading Advisors". Operational Risk Toward Basel III: Best Practices and Issues in Modeling, Management, and Regulation. John Wiley & Sons. p. 453. ISBN 978-0-470-39014-6.
  5. ^ Trading Risk: Enhanced Profitability through Risk Control Kenneth L Grant (2009)
  6. ^ The trading game Ryan Jones (1999)

Further reading

Read other articles:

العلاقات السورية الفانواتية سوريا فانواتو   سوريا   فانواتو تعديل مصدري - تعديل   العلاقات السورية الفانواتية هي العلاقات الثنائية التي تجمع بين سوريا وفانواتو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة سور

 

日本の政治家河野 義博かわの よしひろ 農林水産大臣政務官時生年月日 (1977-12-01) 1977年12月1日(46歳)出生地 福岡県福岡市出身校 慶應義塾大学経済学部前職 丸紅従業員所属政党 公明党公式サイト 参議院議員 かわの義博 参議院議員選挙区 比例区当選回数 2回在任期間 2013年 - 現職テンプレートを表示 河野 義博(かわの よしひろ、1977年12月1日 - )は、日本の政治家。公

 

Міністр житлового будівництва і міського розвитку СШАТип housing ministerdЧлен Кабінет СШАМісце Robert C. Weaver Federal BuildingdСтворення 9 вересня 1965Заступник United States Deputy Secretary of Housing and Urban DevelopmentdВебсайт hud.gov/about/Secretary Міністр житлового будівництва і міського розвитку США (англ. United States Secretary ...

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. La mise en forme de cet article est à améliorer (avril 2019). La mise en forme du texte ne suit pas les recommandations de Wikipédia : il faut le « wikifier ». Comment faire ? Les points d'amélioration suivants sont les cas les plus fréquents. Le détail des points à revoir est peut-être précisé sur la page de discussion. Les titres sont pré-formatés par le logiciel. Ils ne sont n...

 

Philipp Scheidemann Philipp Heinrich Scheidemann (* 26. Juli 1865 in Kassel; † 29. November 1939 in Kopenhagen) war ein deutscher sozialdemokratischer Politiker und Publizist. Im ersten Viertel des 20. Jahrhunderts war er einer der herausragenden Protagonisten und Repräsentanten seiner Partei und der Weimarer Republik. Während der Novemberrevolution verkündete Scheidemann am 9. November 1918 von einem Balkon des Reichstagsgebäudes aus den Zusammenbruch des Deutschen Kaiserreichs und pro...

 

Museum in Turin, Italy Museum of Oriental ArtMuseo d'Arte OrientaleLocation within TurinEstablishedDecember 5, 2008LocationPalazzo Mazzonis, Via San Domenico 9-11, 10122 - Turin, ItalyCoordinates45°04′28″N 7°40′46″E / 45.0744°N 7.6794°E / 45.0744; 7.6794TypeAsian art and ArchaeologyCollection size2,300Visitors119,000 (2019)DirectorMarco Guglielminotti TrivelWebsitewww.maotorino.it The Museum of Oriental Art (Italian: Museo d'Arte Orientale, MAO) is a museum...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2016. Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditujukan untuk komunitas bahasa Inggris, halaman itu harus dikontribusikan ke ...

 

En el idioma español, el vocablo «Dios» en las religiones monoteístas, se utiliza como título para referirse a una deidad suprema. Los nombres de Dios están asociados a las formas en que se concibe la idea de la divinidad y presentan numerosas variantes. Otras lenguas poseen nombres genéricos similares, aunque es común que la palabra «Dios» en un idioma sea entendida por los hablantes de otras lenguas como referido a alguna deidad específica adorada por ellos. Sin embargo, existen ...

 

1644 battle in China This article is about the battle in 1644. For the battle during the Boxer Rebellion, see Battle of Shanhaiguan (1900). For the 1933 Battle of Shanhai Pass, see Defense of the Great Wall. Battle of Shanhai PassPart of the Ming–Qing transitionBattle of Shanhai PassDateMay 27, 1644LocationShanhai Pass, ChinaResult Qing victoryBelligerents Qing dynasty Ming defenders of Shanhai Pass Shun dynastyCommanders and leaders Dorgon Wu Sangui Li ZichengStrength Qing: 60,000 men[...

State highway in California, United States For the original Sign Route 3, see California State Route 3 (1934). State Route 3SR 3 highlighted in redRoute informationMaintained by CaltransLength146.369 mi[1] (235.558 km)SR 3 is broken into pieces, and the length does not reflect the SR 299 overlap that would be required to make the route continuous.Existed1964 renumbering[2]–presentTouristroutes Trinity Heritage Scenic BywayMajor junctionsSouth end SR ...

 

Chinese kingdom (220–266) during the Three Kingdoms period This article is about the Three Kingdoms state. For the Northern and Southern Dynasties Wei dynasty, see Northern Wei. For the modern curator, see Cao Wei (curator). Former Wei redirects here. For other no longer extant Weis, see Wei (disambiguation). Wei魏220–266The territories of Cao Wei (in yellow), 262 AD.CapitalXuchang (220–226),[1] Luoyang (226–266)Common languagesMiddle ChineseReligion Taoism, Confucianism...

 

Peter Florence in Powys, Wales Peter Kenrick Florence CBE[1] (born 4 October 1964) is a British festival director, most notable for founding the Hay Festival with his father and mother, Norman Florence and Rhoda Lewis, funding the first festival with winnings from a poker game.[2] Education and career Peter Florence was educated at Ipswich School, Jesus College, Cambridge, and the University of Paris and has an MA in Modern and Medieval Literatures. He holds honorary doctorate...

American basketball player and coach Van ChancellorVan Chancellor at the 2005 Women's Final Four in Indianapolis.Biographical detailsBorn (1943-09-27) September 27, 1943 (age 80)Louisville, Mississippi, U.S.Coaching career (HC unless noted)1965–1967Noxapater HS1967–1973Horn Lake HS1973–1978Harrison Central HS1978–1997Ole Miss1997–2006Houston Comets2002–2004United States2007–2011LSU Head coaching recordOverall530–195 (NCAA)211–111 (WNBA)Accomplishments and honorsChampion...

 

Italian historian and naturalist Emanuele Repetti Emanuele Repetti (1776-1852) was an Italian historian and naturalist who wrote extensively on the history of Tuscany. He was born in Carrara.[1] Works He contributed to the Antologia of Vieusseux and the Atti of the Accademia dei Georgofili, of which he was secretary. From 1833 to 1846, he published the Dizionario geografico, fisico e storico della Toscana, which offers an account of the natural and civic history of municipalities in T...

 

Lebanese Christian Greek-Orthodox family The Bustros family is a prominent Lebanese Antiochian Greek Orthodox family. One of the “Seven Families”, it is one of the original Beirut families along with the descendants of Sursock, Fernaine, Dagher, Trad, Tueni and Gebeily families, who constituted the traditional high society of Beirut. Estate holders and feudal lords by origin, today they are business owners, artists and land owners throughout the country. The surname Bustros is believed to...

Catherine EngelbertEngelbert in 2019Tempat tinggalBerkeley Heights, NJKebangsaanAmerika SerikatPendidikanBachelor of Science, AkuntansiAlmamaterLehigh UniversityPekerjaanKomisaris WNBAAnakDua Catherine Cathy Engelbert (lahir 14 November 1964) adalah seorang eksekutif bisnis asal Amerika Serikat. Sejak 17 Juli 2019 ia menjabat sebagai Komisaris untuk Asosiasi Bola Basket Nasional Wanita (WNBA).[1][2][3] Sebelumnya ia bekerja untuk Deloitte, salah satu dari Empat Besar, ...

 

2014 Indian Kannada-language action comedy film Super RangaTheatrical release posterDirected bySadhu KokilaStory byVakkantham VamsiBased onKick (2009)by Surender ReddyProduced byK. ManjuStarring Upendra Kriti Kharbanda CinematographyAshok KashyapEdited byJoni HarshaMusic byArjun JanyaProductioncompanyK Manju CinemaasRelease date 19 September 2014 (2014-09-19) Running time146 minutesCountryIndiaLanguageKannadaBudget₹9 crore (US$1.1 million)[1] Super Ranga is a 201...

 

Professional wrestling tag team Brahman BrothersThe Brahman Brothers in November 2013Birth nameKei SatoShu SatoBorn (1977-07-05) 5 July 1977 (age 46) (both)Yokohama, Kanagawa, JapanProfessional wrestling careerRing name(s)Shu Sato and Kei SatoBrahman Shu and Brahman KeiGinkaku and KinkakuLos Wingers[1]Sailor BoysSyachihoko Machines Neo Devil Pierroths Demon SpidersYokohama ga Unda Baka Kyōdai[2]Billed height1.70 m (5 ft 7 in) (both)Billed weight82 kg ...

Rumah Limas Arsitektur Sumatera Selatan mengacu kepada yang berhubungan dengan tradisi dan desain arsitektur berbagai etnik yang ada di Sumatera Selatan. Secara garis besar, kelompok etnis/etnik di Sumatera Selatan terbagi menjadi 2 suku utama beserta sub-suku didalamnya, yaitu: Melayu & Komering. Selain pembagian suku bangsa, pembagian kelompok masyarakat serta kultural dan geo-budaya juga terbagi menjadi 2, yakni: orang Ulu (Uluan) & orang Ilir (Iliran). Uluan/orang Ulu adalah semua...

 

The Ribble Estuary, the largest SSSI in Merseyside. This is a list of the Sites of Special Scientific Interest (SSSIs) in Merseyside, which is part of North West England. Merseyside has a population of 1,353,600 making it one of the most densely populated areas of the United Kingdom.[1] Geographically, Merseyside is split by the River Mersey which has a surrounding network of canals, rivers and valleys some of which have been created by human activity. Other habitats have been adverse...

 
Kembali kehalaman sebelumnya