Share to: share facebook share twitter share wa share telegram print page

Singleton (mathematics)

In mathematics, a singleton (also known as a unit set[1] or one-point set) is a set with exactly one element. For example, the set is a singleton whose single element is .

Properties

Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains,[1] thus 1 and are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as is a singleton as it contains a single element (which itself is a set, but not a singleton).

A set is a singleton if and only if its cardinality is 1. In von Neumann's set-theoretic construction of the natural numbers, the number 1 is defined as the singleton

In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set A, the axiom applied to A and A asserts the existence of which is the same as the singleton (since it contains A, and no other set, as an element).

If A is any set and S is any singleton, then there exists precisely one function from A to S, the function sending every element of A to the single element of S. Thus every singleton is a terminal object in the category of sets.

A singleton has the property that every function from it to any arbitrary set is injective. The only non-singleton set with this property is the empty set.

Every singleton set is an ultra prefilter. If is a set and then the upward of in which is the set is a principal ultrafilter on . Moreover, every principal ultrafilter on is necessarily of this form.[2] The ultrafilter lemma implies that non-principal ultrafilters exist on every infinite set (these are called free ultrafilters). Every net valued in a singleton subset of is an ultranet in

The Bell number integer sequence counts the number of partitions of a set (OEISA000110), if singletons are excluded then the numbers are smaller (OEISA000296).

In category theory

Structures built on singletons often serve as terminal objects or zero objects of various categories:

  • The statement above shows that the singleton sets are precisely the terminal objects in the category Set of sets. No other sets are terminal.
  • Any singleton admits a unique topological space structure (both subsets are open). These singleton topological spaces are terminal objects in the category of topological spaces and continuous functions. No other spaces are terminal in that category.
  • Any singleton admits a unique group structure (the unique element serving as identity element). These singleton groups are zero objects in the category of groups and group homomorphisms. No other groups are terminal in that category.

Definition by indicator functions

Let S be a class defined by an indicator function Then S is called a singleton if and only if there is some such that for all

Definition in Principia Mathematica

The following definition was introduced by Whitehead and Russell[3]

Df.

The symbol denotes the singleton and denotes the class of objects identical with aka . This occurs as a definition in the introduction, which, in places, simplifies the argument in the main text, where it occurs as proposition 51.01 (p. 357 ibid.). The proposition is subsequently used to define the cardinal number 1 as

Df.

That is, 1 is the class of singletons. This is definition 52.01 (p. 363 ibid.)

See also

  • Class (set theory) – Collection of sets in mathematics that can be defined based on a property of its members
  • Isolated point – Point of a subset S around which there are no other points of S
  • Uniqueness quantification – Logical property of being the one and only object satisfying a condition
  • Urelement – Concept in set theory

References

  1. ^ a b Stoll, Robert (1961). Sets, Logic and Axiomatic Theories. W. H. Freeman and Company. pp. 5–6.
  2. ^ Dolecki, Szymon; Mynard, Frédéric (2016). Convergence Foundations of Topology. Hackensack, New Jersey: World Scientific Publishing. pp. 27–54. doi:10.1142/9012. ISBN 978-981-4571-52-4. MR 3497013.
  3. ^ Whitehead, Alfred North; Bertrand Russell (1910). Principia Mathematica. Vol. I. p. 37.


Read other articles:

دوري جامايكا الممتاز 2013–14 تفاصيل الموسم دوري جامايكا الممتاز  النسخة 40  البلد جامايكا  البطل مونتيغو باي يونايتد  [لغات أخرى]‏  عدد المشاركين 14     دوري جامايكا الممتاز 2014–15  تعديل مصدري - تعديل   دوري جامايكا الممتاز 2013–14 هو الموسم 40 من دوري جام�...

 

Cet article est une ébauche concernant la construction, une association et la France. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Confédération de l'artisanat et des petites entreprises du bâtiment Création 1946 Personnages clés Jean-Christophe Repon (président), Henry Halna du Fretay (secrétaire général) Slogan Plus forts. Ensemble. Président Jean-Christophe Repon Activité Organisation profession...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2022) فلسفة الرعاية الصحية هي دراسة الأخلاق والعمليات والأشخاص مما يشكل الحفاظ على صحة الإنسان. (بالرغم أنّ المخاوف البيطرية جديرة بالملاحظة، فإن الفكر المتعلق �...

2008 Indian filmPazhaniPosterDirected byPerarasuWritten byPerarasuProduced bySakthi ChidambaramStarringBharathKajal AggarwalKhushbu SundarCinematographyVijay MiltonEdited byV. JayshankarMusic bySrikanth DevaProductioncompanyCinema ParadiseDistributed byCinema ParadiseRelease date 14 January 2008 (2008-01-14) Running time154 minutesCountryIndiaLanguageTamil Pazhani is a 2008 Indian Tamil-language action drama film written and directed by Perarasu. It stars Bharath, Kajal Aggarwa...

 

1984 Italian-American television miniseries For other uses, see The Last Days of Pompeii (disambiguation). The Last Days of PompeiiWritten byEdward George Bulwer-LyttonCarmen CulverDirected byPeter R. HuntStarringNed BeattyBrian BlessedErnest BorgnineOlivia HusseyMusic byTrevor JonesCountry of originItalyUnited KingdomUnited StatesOriginal languageEnglishProductionExecutive producerDavid GerberProducersWilliam HillRichard IrvingCinematographyJack CardiffEditorsMichael EllisRichard MardenRunni...

 

Welsh politician (born 1953) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Hywel Williams – news · newspapers · books · scholar · JSTOR (April 2009) (Learn how and when to remove this template...

Chocolate produced in Belgium Some varieties of pralines in a chocolatier in Antwerp Belgian chocolate (French: Chocolat Belge, German: Belgische Schokolade, Dutch: Belgische Chocolade) is chocolate produced in Belgium. A major industry since the 19th century, today it forms an important part of the nation's economy and culture. The raw materials used in chocolate production do not originate in Belgium; most cocoa is produced in Africa, Central America, and South America. Nonetheless, the cou...

 

Minor league baseball teamCanton–Akron Indians1989–1996 Canton, Ohio Minor league affiliationsPrevious classesDouble-ALeagueEastern LeagueMajor league affiliationsPrevious teamsCleveland Indians 1989–1996Minor league titlesClass titles 0League titles 0Conference titles 0Division titles (1)1992Team dataPrevious names Akron RubberDucks (2014–present) Akron Aeros (1997–2013) Canton–Akron Indians (1989–1996) Vermont Mariners (1988) Vermont Reds (1984–1987) Lynn Sailors (1980�...

 

Pemandangan Pulau Lindau dari udara Pulau Lindau adalah sebuah pulau yang terletak di Danau Konstanz timur. Kota tua Lindau terletak di pulau ini. Pulau ini mencakup sekitar 2% dari luas kota Lindau secara keseluruhan dan 12% populasinya. Pulau Lindau juga merupakan salah satu distrik di kota tersebut yang bernama Insel (Pulau). Pulau Lindau awalnya terdiri dari tiga pulau kecil yang terpisah yang terbentuk dari moraine Gletser Rhein:[1] Vordere Insel atau Hauptinsel, terdiri dari kot...

  لمعانٍ أخرى، طالع القلاع (توضيح). قرية القلاع  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة المحويت المديرية مديرية ملحان العزلة عزلة بدح السكان التعداد السكاني 2004 السكان 488   • الذكور 263   • الإناث 225   • عدد الأسر 70   • عدد المساكن 69 معلومات...

 

Leopold Leonard Leopold Leonhard Raymund Count of Thun and Hohenstein (17 April 1748 in Tetschen in the castle of Tetschen – 22 October 1826 at Cibulka castle near Körbern, now Prague-Košíře) was the 73rd Bishop of Passau and the last Prince-Bishop of Passau.[1][2][3] Life Leopold Leonhard was the youngest of twelve children from the first marriage of Johann Joseph Count von Thun and Hohenstein with Maria Christiana Countess of Hohenzollern and Hechingen. Thun ha...

 

1987 thriller film directed by Roger Donaldson No Way OutTheatrical release posterDirected byRoger DonaldsonScreenplay byRobert GarlandBased onThe Big Clockby Kenneth FearingProduced byRobert GarlandLaura ZiskinStarring Kevin Costner Gene Hackman Sean Young Will Patton Howard Duff CinematographyJohn AlcottEdited byNeil TravisMusic byMaurice JarreDistributed byOrion PicturesRelease date August 14, 1987 (1987-08-14) Running time114 minutesCountryUnited StatesLanguageEnglishBudget...

Australian adult-film actress and racing driver Renee GracieNationality AustralianBorn (1995-01-05) 5 January 1995 (age 28)Brisbane, Queensland, AustraliaDunlop Super2 Series careerDebut season2015Racing licence FIA SilverFormer teamsPaul Morris MotorsportDragon Motor RacingStarts48Wins0Podiums0Poles0Best finish18th in 2015Previous series20122013–142015–16Aussie Racing CarsPorsche Carrera Cup AustraliaV8 SupercarsChampionship titles2023GT World Challenge Australia GT Trophy Rene...

 

North Germanic language IcelandicíslenskaPronunciation[ˈis.t͡lɛn.ska]Native toIcelandEthnicityIcelandersNative speakers357,069 (2018)Language familyIndo-European GermanicNorth GermanicWest ScandinavianIcelandicEarly formsOld Norse Old West Norse Old Icelandic Writing systemLatin (Icelandic alphabet)Icelandic BrailleOfficial statusOfficial language in Iceland  Nordic CouncilRegulated byÁrni Magnússon Institute for Icelandic Studies[a]Language...

 

Book by Alfred Aho and Jeffrey Ullman Principles of Compiler Design AuthorAlfred V. Aho, and Jeffrey D. UllmanLanguageEnglishPublisherAddison-WesleyPublication date1977Pages614ISBN0-201-00022-9 Principles of Compiler Design, by Alfred Aho and Jeffrey Ullman, is a classic textbook on compilers for computer programming languages. Both of the authors won the 2020 Turing award for their work on compilers. It is often called the green dragon book[1] and its cover depicts a knight and a dra...

Swedish actor and author (born 1971) For other people named Jonas Karlsson, see Jonas Karlsson (disambiguation). Jonas KarlssonJonas Karlsson in 2019.BornSven Bert Jonas Karlsson (1971-03-11) 11 March 1971 (age 52)Salem, SwedenNationalitySwedishOccupation(s)Actor, authorYears active1981–present Sven Bert Jonas Karlsson (born 11 March 1971) is a Swedish actor and author. Karlsson was born in Salem. He won a Guldbagge Award for Best Actor in 2004 for the movie Details. He publis...

 

International annual celebration of human rights For the day celebrated as Human Rights Day in South Africa, see Human Rights Day (South Africa). Human Rights DayHuman Rights Logo, unveiled in New York on 23 September 2011Also calledHRDObserved byUN MembersCelebrationsWorldwideBegins1948; 75 years ago (1948)Date10 DecemberFrequencyAnnual Human Rights Day is celebrated annually around the world on 10 December every year. The date was chosen to honor the United Nations Ge...

 

American automobile manufacturer This article is about the American automobile. For the British automobile, see Peerless (UK car). For other uses, see Peerless (disambiguation). Peerless Motor Car CompanyTypeAutomobile ManufacturingIndustryAutomotiveFounded1900; 123 years ago (1900)Defunct1931FateBecame Peerless Corp. BrewersHeadquartersCleveland, Ohio, United StatesArea servedUnited StatesKey peopleLouis P. Mooers, Chief Engineer (1901–1905)[1] Charles Schmidt, Ch...

This article is about the telescope. For other uses, see Magic (disambiguation). Major Atmospheric Gamma Imaging Cherenkov TelescopesThe first MAGIC telescopeAlternative namesMAGIC Part ofRoque de los Muchachos Observatory Location(s)La Palma, Atlantic Ocean, international watersCoordinates28°45′43″N 17°53′24″W / 28.761944444444°N 17.89°W / 28.761944444444; -17.89 Altitude2,200 m (7,200 ft) WavelengthGamma rays (indirectly)Built2004First...

 

German general, geographer, and politician Karl HaushoferMajor General Karl Haushofer, c. 1920Birth nameKarl Ernst HaushoferBorn(1869-08-27)27 August 1869Munich, Kingdom of BavariaDied10 March 1946(1946-03-10) (aged 76)Pähl, Free State of Bavaria, Allied-occupied GermanyAllegiance German EmpireBranch Imperial German ArmyYears of service1887–1919RankMajor generalSpouse(s) Martha Mayer-Doss ​ ​(m. 1896; died 1946)​ChildrenAl...

 
Kembali kehalaman sebelumnya