Tetrasulfur tetranitride is an inorganic compound with the formulaS4N4. This vivid orange, opaque, crystalline explosive is the most important binary sulfur nitride, which are compounds that contain only the elementssulfur and nitrogen. It is a precursor to many S-N compounds and has attracted wide interest for its unusual structure and bonding.[1][2]
S4N4 adopts an unusual "extreme cradle" structure, with D2dpoint group symmetry. It can be viewed as a derivative of a (hypothetical) eight-membered ring (or more simply a 'deformed' eight-membered ring) of alternating sulfur and nitrogen atoms. The pairs of sulfur atoms across the ring are separated by 2.586 Å, resulting in a cage-like structure as determined by single crystal X-ray diffraction.[3] The nature of the transannular S–S interactions remains a matter of investigation because it is significantly shorter than the sum of the van der Waals radii[4] but has been explained in the context of molecular orbital theory.[1] One pair of the transannular S atoms have valence 4, and the other pair of the transannular S atoms have valence 2.[citation needed] The bonding in S4N4 is considered to be delocalized, which is indicated by the fact that the bond distances between neighboring sulfur and nitrogen atoms are nearly identical. S4N4 has been shown to co-crystallize with benzene and the C60 molecule.[5]
Properties
S4N4 is stable to air. It is, however, unstable in the thermodynamic sense with a positive enthalpy of formation of +460 kJ/mol. This endothermic enthalpy of formation originates in the difference in energy of S4N4 compared to its highly stable decomposition products:
2 S4N4 → 4 N2 + S8
S4N4 is shock and friction sensitive and because one of its decomposition products is a gas, it is considered a primary explosive.[1][6] Purer samples tend to be more sensitive.[7] Small samples can be detonated by striking with a hammer. S4N4 is thermochromic, changing from pale yellow below −30 °C to orange at room temperature to deep red above 100 °C.[1]
Synthesis
S4N4 was first prepared in 1835 by M. Gregory by the reaction of disulfur dichloride with ammonia,[8] a process that has been optimized:[9]
6 S2Cl2 + 16 NH3 → S4N4 + S8 + 12 [NH4]Cl
Coproducts of this reaction include heptasulfur imide (S7NH) and elemental sulfur, and the latter equilibrates with more S4N4 and ammonium sulfide:[10]
An alternative synthesis entails the use of (((CH3)3Si)2N)2S as a precursor with pre-formed S–N bonds. (((CH3)3Si)2N)2S is prepared by the reaction of lithium bis(trimethylsilyl)amide and SCl2.
S4N4 reacts with metal complexes, but the bonding situation may be quite complex. The cage remains intact in some cases but in other cases, it is degraded.[2][12] For example, the soft Lewis acid CuCl forms a coordination polymer:[1]
n S4N4 + n CuCl → (S4N4)n-μ-(−Cu−Cl−)n
Reportedly, [Pt2Cl4(P(CH3)2Ph)2] initially forms a complex with S4N4 at sulfur. This compound, upon standing, isomerizes to additionally bond through a nitrogen atom. S4N4oxidatively adds to Vaska's complex ([Ir(Cl)(CO)(PPh3)2] to form a hexacoordinate iridium complex where the S4N4 binds through two sulfur atoms and one nitrogen atom.[2]
Passing gaseous S4N4 over silver metal yields the low temperature superconductorpolythiazyl or polysulfurnitride (transition temperature (0.26±0.03) K[16]), often simply called "(SN)x". In the conversion, the silver first becomes sulfided, and the resulting Ag2S catalyzes the conversion of the S4N4 into the four-membered ring S2N2, which readily polymerizes.[1]
Triphenylphosphine abstracts a sulfur atom, replacing it with another triphenylphosphine moiety:[14]
S4N4 + 2 PPh3 → S3(PPh3)N4 + SPPh3
Safety
S4N4 is a categorized as a primary explosive that is shock and friction sensitive. While comparable to pentaerythritol tetranitrate (PETN) in terms of impact sensitivity, its friction sensitivity is equal to or even lower than lead azide.[17] Purer samples are more shock-sensitive than those contaminated with elemental sulfur.[9][7]
^Rzepa, H. S.; Woollins, J. D. (1990). "A PM3 SCF-MO Study of the Structure and Bonding in the Cage Systems S4N4 and S4N4X (X = N+, N−, S, N2S, P+, C, Si, B− and Al−)". Polyhedron. 9 (1): 107–111. doi:10.1016/S0277-5387(00)84253-9.
^Konarev, D. V.; Lyubovskaya, R. N.; Drichko, N. V.; et al. (2000). "Donor-Acceptor Complexes of Fullerene C60 with Organic and Organometallic Donors". Journal of Materials Chemistry. 10 (4): 803–818. doi:10.1039/a907106g.
^Kelly, P. F.; Slawin, A. M. Z.; Williams, D. J.; Woollins, J. D. (1992). "Caged explosives: Metal-Stabilized Chalcogen Nitrides". Chemical Society Reviews. 21 (4): 245–252. doi:10.1039/CS9922100245.
^ abcdeRoesky, H. W. (1971). "The Sulfur–Nitrogen Bond". In Senning, Alexander (ed.). Sulfur in Organic and Inorganic Chemistry. Vol. 1. New York: Marcel Dekker. pp. 14–18. ISBN0-8247-1615-9. LCCN70-154612.