Share to: share facebook share twitter share wa share telegram print page

Dělení nulou

Dělení nulou je v matematice takové dělení, při němž je dělitel nula. Může být zapsáno jako , kde a je dělenec. V oborech reálných ani komplexních čísel nemá takové dělení smysl – nula je jediné číslo, kterým nelze dělit. V oboru komplexních čísel rozšířených o (komplexní) nekonečno je definováno pro všechny nenulové dělence jako .[1]

Při dělení v plovoucí řádové čárce může být výsledkem speciální hodnota not a number (není číslo) nebo nekonečno.

Interpretace v elementární aritmetice

Když se mluví o dělení na základní úrovni, je často považováno za rozdělování množiny objektů na stejné části. Např.: Pokud máme deset kvádrů a rozdělíme je na skupiny po pěti, dostaneme dvě stejně velké části. To by mohla být ukázka toho, že 10/5 = 2. Dělitel je počet kvádrů v každé části a výsledek dělení odpovídá na otázku: „Pokud mám stejné části po 5 kusech, kolik takových částí musím dát dohromady, abych dostal 10 kusů?“.

Pokud tuto otázku aplikujeme na dělení nulou, otázka „Pokud mám stejné části po 0 kusech, kolik takových částí musím dát dohromady, abych dostal 10 kusů?“ nedává smysl, protože přičítáním částí o 0 prvcích se deset kusů nikdy nezíská.

Další metodou, jak popsat dělení nulou, je opakované odečítání. Např.: Pokud chceme vydělit číslo 13 pěti, odečteme od 13 dvakrát 5 a dostaneme zbytek 3. Dělitel se odečítá, dokud není zbytek menší než dělitel. V případě, že je dělitel nula, při opakovaném odečítání nuly od dělence nikdy nedosáhneme zbytku menšího než nula.

Rané pokusy

Brahmaguptův spis Brāhmasphuṭa-siddhānta z roku 628 je první, který považoval nulu za normální číslo a definoval operace ji obsahující. Autorovi se ale nepodařilo vysvětlit dělení nulou, jeho definice vede k absurdním algebraickým závěrům. Brahmagupta píše:

Kladné nebo záporné číslo dělené nulou je zlomek se jmenovatelem nula. Nula dělená záporným nebo kladným číslem je buď nula, nebo je vyjádřena jako zlomek s čitatelem nula a konečným množstvím jako jmenovatelem. Nula dělená nulou je nula.

Mahavira se v roce 830 neúspěšně pokusil opravit Brahmaguptovu chybu:

Číslo zůstává nezměněno, když je děleno nulou.

Bháskara II. se pokusil problém vyřešit definováním . Tato definice dává určitý smysl, ale může vést k paradoxům, pokud se s ní nezachází opatrně.

Např. , což by při odstranění zlomků vycházelo . To je nesmysl.

Algebraická interpretace

Přirozeným způsobem, jak vyložit dělení nulou, je nejprve definovat dělení pomocí jiných aritmetických operací. Podle standardních pravidel aritmetiky není dělení nulou v oborech přirozených čísel, celých čísel, racionálních čísel, reálných čísel a komplexních čísel (nerozšířených o nekonečno) definováno.

Důvodem je, že dělení je definováno jako inverzní operace k operaci násobení, hodnota je takovým číslem, pro které platí rovnice . Například

vyjadřuje fakt, že číslo je tím číslem, které lze dosadit do výrazu

.

Avšak v případě

neexistuje žádné číslo, kterým by bylo možno nahradit otazník ve výrazu

,

neboť jakékoli číslo násobené nulou je nula, nikoli šest.

Algebraicky vyjádřeno: pokud , lze rovnici zapsat jako , tedy prostě . V tomto případě tedy rovnice nemá žádné řešení, pokud , a má nekonečně mnoho řešení, pokud . Ani v jednom případě tedy výraz nedává smysl a výsledek dělení nulou tak není definován.

Mylné závěry při dělení nulou

Pokud by bylo nějak definováno dělení nulou, mohlo by dojít k mnoha absurdním výsledkům. Příkladem je falešný důkaz, že , např.:

  1. Pro každé reálné číslo platí:
  2. Rozložíme obě strany dvěma různými způsoby
  3. Vydělíme obě strany výrazem (zde je ve skutečnosti dělení nulou, protože )
  4. Což je:
  5. Protože může nabývat jakýchkoliv hodnot, dosadíme .

Chybou je v tomto případě předpoklad, že (tzn. 0/0) se rovná 1. K podobným nesmyslm vede jakákoliv jiná hodnota přiřazená jako výsledek 0/0.

Limity a dělení nulou

Funkce pro blížící se nule zprava jde k nekonečnu, zatímco pro blížící se nule zleva jde k minus nekonečnu

Na první pohled vypadá možné definovat jako limitu pro jdoucí k 0.

Pro každé kladné platí:

Pro každé záporné platí:

Proto můžeme uvažovat o definování a/0 jako +∞ pro kladné a a -∞ pro záporné a. Nicméně tato definice je nevyhovující ze dvou důvodů.

Zaprvé: Kladné a záporné nekonečno nejsou reálná čísla. Takže pokud chceme zůstat v oboru reálných čísel, nedefinovali jsme nic, co by dávalo smysl. Pokud chceme pracovat s takovou definicí, je nutné rozšířit obor reálných čísel.

Zadruhé: Braní limity zprava je čistě libovolné. Stejně tak bychom mohli vzít limitu zleva a definovat jako -∞ pro kladné a a +∞ pro záporné a. Toto se dá ilustrovat na rovnici:

,

což nedává smysl. To znamená, že jediným fungujícím rozšířením je zavedení nekonečna bez znaménka.

Dále neexistuje žádná zřejmá definice , která by mohla být odvozena za použití limit. Limita

neexistuje. Limita

,

kde se f(x) i g(x) blíží 0, když se x blíží 0, může konvergovat k jakékoliv hodnotě nebo nemusí konvergovat vůbec. (Viz též L'Hospitalovo pravidlo.)

Dělení nulou v počítačích

Kalkulátor TI-86 signalizuje chybu dělení nulou

Standard IEEE pro dvojkovou aritmetiku v plovoucí řádové čárce, podporovaný skoro všemi moderními procesory, specifikuje, že každá operace v plovoucí řádové čárce včetně dělení nulou má dobře definovaný výsledek. V IEEE 754 je a ÷ 0 kladné nekonečno, pokud je a kladné; záporné nekonečno, pokud je a záporné, a NaN (not a number), pokud a = 0. V IEEE 754 jsou dvě nuly: kladná a záporná; při dělení zápornou nulou jsou ve výsledku opačná znaménka oproti uvedeným výsledkům.

S celočíselným dělením nulou se obvykle zachází jinak, protože neexistuje celočíselná reprezentace takového výsledku. Některé procesory vygenerují výjimku při pokusu o dělení nulou, jiné prostě pokračují a vygenerují nesprávný výsledek dělení (často nulu nebo velké kladné či záporné číslo jako aproximaci nekonečna), případně jde o nedefinované chování.

Reference

  1. M. Hušek, P. Pyrih et al. Matematická analýza 4, kapitola Komplexní funkce, s. 2. Univerzita Karlova v Praze

Související články

Externí odkazy

Read other articles:

Para otros usos de este término, véase Notker. Notker Balbulus Imagen del beato en un manuscrito medievalInformación personalNacimiento ca. 840Jonschwil (Suiza) o Elgg (Suiza) Fallecimiento 6 de abril de 912San Galo (Suiza) Religión Iglesia católica Información profesionalOcupación Poeta, compositor, musicólogo, historiador y escritor Información religiosaBeatificación 1512 por Julio IIFestividad 6 de abrilVenerado en Iglesia católicaOrden religiosa Orden de San Benito [editar...

 

Roepie Land  India Verdeling 100 paise ISO 4217-code INR Afkorting of valutateken ₹ Wisselkoers 1 EUR = 88,1049 INR(7 juni 2023) Munten van 10 roepie Portaal    Economie Valutateken voor de roepie De roepie is de munteenheid van India. Eén roepie is honderd paise. De volgende munten worden gebruikt: 1, 2, 5, 10 en 20 roepie.[1][2] Het papiergeld is beschikbaar in 1, 2, 5, 10, 20, 50, 100, 500 en 2000 roepie.[3] In 2017 werd het biljet van 20...

 

O tornado F5 sobre Bridge Creek, em 3 de março de 1999. Rastro de destruição deixado pelo tornado O Tornado em Oklahoma (1999) ou Tornado de Bridge Creek-Moore foi um potente tornado de categoria F5 na Escala Fujita causando danos catastróficos, com velocidades do vento acima de 420 km/h (261 mph), com ventos de 512 km/h[1] registrados por meio de radares Doppler, ocorrido em 3 de maio de 1999. Devastou uma extensão de 61 km (38 mi), atingindo principalmente...

Albert Scherr 2016 in Bamberg auf dem Kongress der Deutschen Gesellschaft für Soziologie Albert Scherr (* 15. Juli 1958 in Edenkoben) ist ein deutscher Soziologe und Sozialarbeitswissenschaftler. Albert Scherr studierte Soziologie, Erziehungswissenschaft und Philosophie an der Universität Frankfurt, wo er 1981 als Diplom-Soziologie abschloss und 1985 promoviert wurde. Von 1981 bis 1983 und von 1985 bis 1988 war er als Sozialarbeiter in der Jugendarbeit und Jugendsozialarbeit tätig. Anschli...

 

Parliamentary constituency in Ghana Bole(Bole/Bamboi)constituencyfor the Parliament of GhanaDistrictBole DistrictRegionSavannah Region of GhanaCurrent constituencyPartyNational Democratic CongressMPJoseph Akati Saaka Bole or Bole - Bamboi is one of the constituencies represented in the Parliament of Ghana. It elects one Member of Parliament (MP) by the first past the post system of election. Bole is located in the Bole district of the Savannah Region of Ghana.[1] Boundaries The seat i...

 

Diane LeyreLeyre pada tahun 2022Lahir10 Juli 1997 (umur 26)Neuilly-sur-Seine, PrancisPendidikanIE University Madrid (BBA)PekerjaanModelselebriti radioTinggi177 m (580 ft 8+1⁄2 in)Pemenang kontes kecantikanGelarMiss Paris 2021Miss Île-de-France 2021Miss France 2022Warna rambutCoklatWarna mataCoklatKompetisiutamaMiss France 2022(Pemenang)Miss Universe 2023(TBD) Diane Leyre (lahir 10 Juli 1997) adalah model, selebriti radio, dan pemenang kontes kecantikan yang dimahkot...

Engineer, entrepreneur, Bydgoszcz, Poland, 19th-20th century Stanisław Jan RolbieskiStanisław Rolbieski's family. Stanisław is the second from the leftBorn(1873-11-11)11 November 1873Broniszewice, German EmpireDied20 October 1939(1939-10-20) (aged 65)Bydgoszcz, PolandNationalityPolishOccupation(s)entrepreneur, engineerYears active1902–1939Known forFactory KabelAwards Stanisław Jan Rolbieski (1873-1939) was a Polish engineer, entrepreneur, economic activist, city counselor...

 

British evolutionary biologist Brian CharlesworthBrian CharlesworthBornBrian Charlesworth (1945-04-29) 29 April 1945 (age 78)[5]CitizenshipBritishAlma materUniversity of Cambridge (BA, PhD)Spouse Deborah Maltby ​(m. 1967)​Children1 daughterAwards Thomas Hunt Morgan Medal (2015) Darwin-Wallace Medal (2010) Sewall Wright Award (2006)[1] Frink Medal (2006) FRSE (2000) FRS (1991)[2] Scientific careerFieldsEvolutionary biologyInstituti...

 

Jarot WinarnoJarot sebagai cabup dalam Pilkada Sintang 2020Bupati Sintang Ke-16PetahanaMulai menjabat 26 Februari 2021PresidenJoko WidodoGubernurSutarmidjiWakilYoseph Sudiyanto (2021) Melkianus, S.Sos (2022)PendahuluYosepha Hasnah (plh.)Masa jabatan17 Februari 2016 – 17 Februari 2021PresidenJoko WidodoGubernurCornelisSutarmidjiWakilAskimanPendahuluMilton CrosbyPenggantiYosepha Hasnah (plh.)Wakil Bupati Sintang Ke-3Masa jabatan2005–2010PresidenSusilo Bambang YudhoyonoG...

RCAN3 المعرفات الأسماء المستعارة RCAN3, DSCR1L2, MCIP3, RCN3, hRCN3, RCAN family member 3 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 605860 MGI: MGI:1858220 HomoloGene: 8388 GeneCards: 11123 علم الوجود الجيني الوظيفة الجزيئية • ‏GO:0001948، ‏GO:0016582 ربط بروتيني• troponin I binding• calcium-dependent protein serine/threonine phosphatase regulator activity• RNA b...

 

The Austrian national team at the 2002 Winter Olympics. The list of Olympic men's ice hockey players for Austria consists of 150 skaters and 18 goaltenders. Men's ice hockey tournaments have been staged at the Olympic Games since 1920 (it was introduced at the 1920 Summer Olympics, and was permanently added to the Winter Olympic Games in 1924). Austria has participated in thirteen tournaments, the first in 1928 and the most recent in 2014. Austria has hosted the Winter Olympics twice, in 1964...

 

Fassade zur Rue Notre-Dame-de-Nazareth Die Synagoge der Rue Notre-Dame-de-Nazareth ist die älteste noch erhaltene Synagoge von Paris. Sie wurde 1852 eingeweiht und 1986 zum Monument historique (Kulturdenkmal) erklärt. Sie befindet sich in der Rue Notre-Dame-de-Nazareth Nr. 15 im 3. Arrondissement. Die nächste Métrostation ist Temple der Linie 3. Inhaltsverzeichnis 1 Geschichte 2 Architektur 2.1 Fassade 2.2 Innenraum 3 Ausstattung 4 Orgel 5 Literatur 6 Weblinks 7 Einzelnachweise Geschichte...

Railway station in Chhattisgarh Bilaspur JunctionRegional rail, Light rail & Goods railwayOld station building of Bilaspur Junction built in 1890.General informationLocationAhead budhwari bazar, Bilaspur, Chhattisgarh IndiaCoordinates22°03′26″N 82°10′04″E / 22.0572°N 82.1678°E / 22.0572; 82.1678Elevation292.300 metres (958.99 ft)Owned byIndian RailwaysOperated bySouth East Central RailwaysLine(s)Howrah–Nagpur–Mumbai line Bilaspur–Katni l...

 

Hospital in Queensland, AustraliaSunshine Coast University HospitalQueensland HealthGeographyLocation6 Doherty Street, Birtinya, Queensland, AustraliaCoordinates26°44′39″S 153°06′53″E / 26.7441°S 153.1146°E / -26.7441; 153.1146OrganisationCare systemPublic Medicare (AU)TypeTeachingAffiliated universityUniversity of the Sunshine Coast and Griffith University, School of MedicineServicesEmergency departmentYesBeds707[1]HelipadsHelipad(ICAO: YXHS) Numbe...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hematoma – news · newspapers · books · scholar · JSTOR (April 2012) (Learn how and when to remove this template message) Not to be confused with Hemangioma. Medical conditionHematomaOther nameshaematomaContusion (bruise), a simple form of hematomaSpecialtyEmerg...

Boxe As competições de boxe nos Jogos Pan-Americanos de 1963 foram realizadas em São Paulo, Brasil. Esta foi a quarta edição do esporte nos Jogos Pan-Americanos, tendo sido disputado apenas entre os homens. Medalhistas Evento Ouro Prata Bronze Peso moscadetalhes Floreal García Pedro Dias Robert Carmody Peso galodetalhes Abel Almaraz Marcíal Guttiérez Arthur Jones Peso penadetalhes Rosemiro Mateus Héctor Pace Char°les Brown Peso levedetalhes Roberto Caminero João Henrique Barry Fost...

 

Lokasi Kepulauan Nordenskiöld di Laut Kara Kepulauan Nordenskiöld atau Kepulauan Nordenskjold (bahasa Rusia: Архипелаг Норденшельда atau Arkhipelag Nordenshel'da) adalah kepulauan yang terletak di bagian timur Laut Kara. Kepulauan ini masuk ke divisi administratif Krasnoyarsk Krai di Rusia. Referensi All locations Diarsipkan 2008-01-09 di Wayback Machine. Valerian Albanov, In the Land of the White Death, 2001. Contains pictures of Fridtjof Nansen's early Arctic maps...

 

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Order of Civil Merit di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan pen...

1939 Indian filmVara VikrayamDirected byC. PullayyaWritten byKallakoori Narayana Rao (story)Balijepalli Lakshmikanta Kavi (dialogues)Produced byChabriaStarringPushpavalliBhanumathiBalijepalli Lakshmikanta KaviDaita GopalamSriranjaniCinematographyBiren DeEdited byDharamvirMusic byPrabhala SatyanarayanaRelease date1939Running time194 minCountryIndiaLanguageTelugu Vara Vikrayam (English: Bridegrooms' Sale) is a 1939 Telugu drama film directed by C. Pullayya.[1] The film is a reformist so...

 

The Skywhale The Skywhale shortly before taking off on its second flight over Canberra Role Hot air balloonType of aircraft National origin Australia and the United Kingdom Manufacturer Cameron Balloons Designer Patricia Piccinini Type Cameron Skywhale 110 Manufacturer Cameron Balloons Construction number 11628 Manufactured 2012-2013 Registration VH-IOQ First flight 2013 Owners and operators Global Ballooning (2013-2019)National Gallery of Australia (2019-current) The Skywhale is a hot air ba...

 
Kembali kehalaman sebelumnya