Ein gegebenes elektrisches Feld ordnet jedem Punkt im Raum ein Potential zu, das bis auf eine Konstante eindeutig ist. Wenn das Potential im gesamten Raum betrachtet wird, spricht man auch von einem Potentialfeld.
Das elektrische Potential beschreibt die Fähigkeit eines elektrischen Feldes, Arbeit an einer elektrischen Ladung zu verrichten. Wenn sich eine Probeladung durch ein elektrisches Feld bewegt, wirkt auf sie die Coulombkraft und es wird Arbeit an ihr geleistet. Sie erhält dadurch potentielle Energie. Die Stärke der Coulombkraft und damit die Größe der zugeführten potentiellen Energie hängt von der Größe der Ladung ab. Um eine allgemeinere Darstellung der potentiellen Energie unabhängig von der Ladung zu erhalten, wird das elektrische Potential eingeführt, indem die potentielle Energie durch die Ladung geteilt wird:
Das Potential gibt damit an, wie viel potentielle Energie eine Ladung pro Ladungseinheit im elektrischen Feld hat. Wenn das elektrische Feld sich nicht mit der Zeit verändert (siehe Elektrostatik), kann man das elektrische Potential als eine Art „Energie pro Ladung“ betrachten. Wenn das elektrische Feld sich jedoch im Laufe der Zeit ändert (siehe Elektrodynamik), muss die Definition des elektrischen Potentials angepasst werden.
In der Elektrostatik
Kennt man die potentielle Energie für eine unbewegte Punktladung im gesamten Raum, berechnet sich das elektrische Potential durch
Elektrisches Potential einer Punktladung
Elektrisches Potential einer positiven bzw. negativen Punktladung. Die Stärke des Potentials wird durch den Farbverlauf von Magenta (+) über gelb (0) zu blau (-) angegeben. Die ringförmigen Linien geben die Äquipotentialflächen an, die anderen Linien, das elektrische Feld.
Ist das elektrische Feld bekannt, so lässt sich das Potential am Punkt mit dem Ortsvektor, ausgehend von einem Nullpotential im Ort , durch ein Kurvenintegral berechnen:
Üblicherweise wird als Nullpotential gewählt. Daraus folgt:
Im Innern eines Leiters ist das elektrische Potential wegen damit konstant.[1][2]
gilt und können deshalb nicht als Gradientenfelder dargestellt werden. Wirbelfrei ist hingegen der Ausdruck
Dieses wirbelfreie Vektorfeld ist mit dem elektrischen Potential als Gradientenfeld darstellbar:
Umgekehrt lässt sich das Potential an einem Ort , ausgehend von einem Nullpotential in einem beliebig gewählten Ort , durch ein Kurvenintegral bestimmen:
Mit der üblichen Wahl von als Nullpotential folgt:
In der Elektrostatik konnte das Potential bereits durch die freie Wahl des Nullpotentials um eine beliebige Konstante verschoben werden. In der Elektrodynamik hat das Potential noch mehr Freiheitsgrade. So kann für ein Potential und das zugehörige Vektorpotential die folgende Eichtransformation
durchgeführt werden, um ein neues Potential und Vektorpotential zu erhalten, die dieselben elektrischen und magnetischen Feldern erzeugen.
Die beiden am häufigsten verwendeten Eichungen sind die Lorenz-Eichung und die Coulomb-Eichung. Es sind aber auch beliebig viele andere Eichungen möglich.
Messung und der Zusammenhang mit der elektrischen Spannung
Das Potential eines elektrischen Feldes ist nicht eindeutig definiert, es kann immer eine beliebige Konstante dazu addiert werden, die von der Wahl des Nullpotentials abhängt (siehe Eichfreiheit). Der konkrete Wert des Potentials an einem Ort kann deshalb beliebig gewählt werden.
Hingegen ist die Potentialdifferenz zwischen zwei Punkten, auch elektrische Spannung genannt, eindeutig und kann deshalb auch gemessen werden.