The evolution of the modern Western digit for the numeral 5 cannot be traced back to the Indian system, as for the digits 1 to 4. The Kushana and Gupta empires in what is now India had among themselves several forms that bear no resemblance to the modern digit. The Nagari and Punjabi took these digits and all came up with forms that were similar to a lowercase "h" rotated 180°. The Ghubar Arabs transformed the digit in several ways, producing from that were more similar to the digits 4 or 3 than to 5.[1] It was from those digits that Europeans finally came up with the modern 5.
While the shape of the character for the digit 5 has an ascender in most modern typefaces, in typefaces with text figures the glyph usually has a descender, as, for example, in .
On the seven-segment display of a calculator and digital clock, it is represented by five segments at four successive turns from top to bottom, rotating counterclockwise first, then clockwise, and vice-versa. It is one of three numbers, along with 4 and 6, where the number of segments matches the number.
5 is the fifth Fibonacci number, being 2 plus 3,[2] and the only Fibonacci number that is equal to its position aside from 1 (that is also the second index). Five is also a Pell number and a Markov number, appearing in solutions to the Markov Diophantine equation: (1, 2, 5), (1, 5, 13), (2, 5, 29), (5, 13, 194), (5, 29, 433), ... (OEIS: A030452 lists Markov numbers that appear in solutions where one of the other two terms is 5). In the Perrin sequence 5 is both the fifth and sixth Perrin numbers.[18]
5 is also the third Mersenne prime exponent of the form , which yields , the eleventh prime number and fifth super-prime.[24][25][2] This is the prime index of the third Mersenne prime and second double Mersenne prime127,[26] as well as the third double Mersenne prime exponent for the number 2,147,483,647,[26] which is the largest value that a signed32-bitinteger field can hold. There are only four known double Mersenne prime numbers, with a fifth candidate double Mersenne prime = 223058...93951 − 1 too large to compute with current computers. In a related sequence, the first five terms in the sequence of Catalan–Mersenne numbers are the only known prime terms, with a sixth possible candidate in the order of 101037.7094. These prime sequences are conjectured to be prime up to a certain limit.
There are a total of five known unitary perfect numbers, which are numbers that are the sums of their positive properunitary divisors.[27][28] The smallest such number is 6, and the largest of these is equivalent to the sum of 4095 divisors, where 4095 is the largest of five Ramanujan–Nagell numbers that are both triangular numbers and Mersenne numbers of the general form.[29][30] The sums of the first five non-primes greater than zero 1 + 4 + 6 + 8 + 9 and the first five prime numbers 2 + 3 + 5 + 7 + 11 both equal 28; the seventh triangular number and like 6 a perfect number, which also includes 496, the thirty-first triangular number and perfect number of the form () with a of , by the Euclid–Euler theorem.[31][32][33] Within the larger family of Ore numbers, 140 and 496, respectively the fourth and sixth indexed members, both contain a set of divisors that produce integer harmonic means equal to 5.[34][35] The fifth Mersenne prime, 8191,[25] splits into 4095 and 4096, with the latter being the fifth superperfect number[36] and the sixth power of four, 46.
The factorial of five is multiply perfect like 28 and 496.[42] It is the sum of the first fifteen non-zero positive integers and 15th triangular number, which in-turn is the sum of the first five non-zero positive integers and 5th triangular number. Furthermore, , where 125 is the second number to have an aliquot sum of 31 (after the fifth power of two, 32).[43] On its own, 31 is the first prime centered pentagonal number,[44] and the fifth centered triangular number.[45] Collectively, five and thirty-one generate a sum of 36 (the square of 6) and a difference of 26, which is the only number to lie between a square and a cube (respectively, 25 and 27).[46] The fifth pentagonal and tetrahedral number is 35, which is equal to the sum of the first five triangular numbers: 1, 3, 6, 10, 15.[47] In the sequence of pentatope numbers that start from the first (or fifth) cell of the fifth row of Pascal's triangle (left to right or from right to left), the first few terms are: 1, 5, 15, 35, 70, 126, 210, 330, 495, ...[48] The first five members in this sequence add to 126, which is also the sixth pentagonal pyramidal number[49] as well as the fifth -perfect Granville number.[50] This is the third Granville number not to be perfect, and the only known such number with three distinct prime factors.[51]
55 is the fifteenth discrete biprime,[52] equal to the product between 5 and the fifth prime and third super-prime 11.[2] These two numbers also form the second pair (5, 11) of Brown numbers such that where five is also the second number that belongs to the first pair (4, 5); altogether only five distinct numbers (4, 5, 7, 11, and 71) are needed to generate the set of known pairs of Brown numbers, where the third and largest pair is (7, 71).[53][54]
Fifty-five is also the tenth Fibonacci number,[55] whose digit sum is also 10, in its decimal representation. It is the tenth triangular number and the fourth that is doubly triangular,[56] the fifth heptagonal number[57] and fourth centered nonagonal number,[58] and as listed above, the fifth square pyramidal number.[39] The sequence of triangular that are powers of 10 is: 55, 5050, 500500, ...[59] 55 in base-ten is also the fourth Kaprekar number as are all triangular numbers that are powers of ten, which initially includes 1, 9 and 45,[60] with forty-five itself the ninth triangular number where 5 lies midway between 1 and 9 in the sequence of natural numbers. 45 is also conjectured by Ramsey number,[61][62] and is a Schröder–Hipparchus number; the next and fifth such number is 197, the forty-fifth prime number[24] that represents the number of ways of dissecting a heptagon into smaller polygons by inserting diagonals.[63] A five-sided convexpentagon, on the other hand, has eleven ways of being subdivided in such manner.[a]
5 is the value of the central cell of the first non-trivial normal magic square, called the Luoshu square. Its array has a magic constant of , where the sums of its rows, columns, and diagonals are all equal to fifteen.[64] On the other hand, a normal magic square[b] has a magic constant of , where 5 and 13 are the first two Wilson primes.[4] The fifth number to return for the Mertens function is 65,[65] with counting the number of square-free integers up to with an even number of prime factors, minus the count of numbers with an odd number of prime factors. 65 is the nineteenth biprime with distinct prime factors,[52] with an aliquot sum of 19 as well[43] and equivalent to 15 + 24 + 33 + 42 + 51.[66] It is also the magic constant of the Queens Problem for ,[67] the fifth octagonal number,[68] and the Stirling number of the second kind that represents sixty-five ways of dividing a set of six objects into four non-empty subsets.[69] 13 and 5 are also the fourth and third Markov numbers, respectively, where the sixth member in this sequence (34) is the magic constant of a normal magic octagram and magic square.[70] In between these three Markov numbers is the tenth prime number 29[24] that represents the number of pentacubes when reflections are considered distinct; this number is also the fifth Lucas prime after 11 and 7 (where the first prime that is not a Lucas prime is 5, followed by 13).[71] A magic constant of 505 is generated by a normal magic square,[70] where 10 is the fifth composite.[72]
5 is also the value of the central cell the only non-trivial normal magic hexagon made of nineteen cells.[73][c] Where the sum between the magic constants of this order-3 normal magic hexagon (38) and the order-5 normal magic square (65) is 103 — the prime index of the third Wilson prime 563 equal to the sum of all three pairs of Brown numbers — their difference is 27, itself the prime index of 103.[24] In base-ten, 15 and 27 are the only two-digit numbers that are equal to the sum between their digits (inclusive, i.e. 2 + 3 + ... + 7 = 27), with these two numbers consecutive perfect totient numbers after 3 and 9.[74] 103 is the fifth irregular prime[75] that divides the numerator (236364091) of the twenty-fourth Bernoulli number, and as such it is part of the eighth irregular pair (103, 24).[76] In a two-dimensional array, the number of planar partitions with a sum of four is equal to thirteen and the number of such partitions with a sum of five is twenty-four,[77] a value equal to the sum-of-divisors of the ninth arithmetic number 15[78] whose divisors also produce an integer arithmetic mean of 6[79] (alongside an aliquot sum of 9).[43] The smallest value that the magic constant of a five-pointed magic pentagram can have using distinct integers is 24.[80][d]
Collatz conjecture
In the Collatz3x + 1problem, 5 requires five steps to reach one by multiplying terms by three and adding one if the term is odd (starting with five itself), and dividing by two if they are even: {5 ➙ 16 ➙ 8 ➙ 4 ➙ 2 ➙ 1}; the only other number to require five steps is 32 since 16 must be part of such path (see [e] for a map of orbits for small odd numbers).[81][82]
Specifically, 120 needs fifteen steps to arrive at 5: {120 ➙ 60 ➙ 30 ➙ 15 ➙ 46 ➙ 23 ➙ 70 ➙ 35 ➙ 106 ➙ 53 ➙ 160 ➙ 80 ➙ 40 ➙ 20 ➙ 10 ➙ 5}. These comprise a total of sixteen numbers before cycling through {16 ➙ 8 ➙ 4 ➙ 2 ➙ 1}, where 16 is the smallest number with exactly five divisors,[83] and one of only two numbers to have an aliquot sum of 15, the other being 33.[43] Otherwise, the trajectory of 15 requires seventeen steps to reach 1,[82] where its reduced Collatz trajectory is equal to five when counting the steps {23, 53, 5, 2, 1} that are prime, including 1.[84] Overall, thirteen numbers in the Collatz map for 15 back to 1 are composite,[81] where the largest prime in the trajectory of 120 back to {4 ➙ 2 ➙ 1 ➙ 4 ➙ ...} is the sixteenth prime number, 53.[24]
When generalizing the Collatz conjecture to all positive or negative integers, −5 becomes one of only four known possible cycle starting points and endpoints, and in its case in five steps too: {−5 ➙ −14 ➙ −7 ➙ −20 ➙ −10 ➙ −5 ➙ ...}. The other possible cycles begin and end at −17 in eighteen steps, −1 in two steps, and 1 in three steps. This behavior is analogous to the path cycle of five in the 3x − 1 problem, where 5 takes five steps to return cyclically, in this instance by multiplying terms by three and subtracting 1 if the terms are odd, and also halving if even.[85] It is also the first number to generate a cycle that is not trivial (i.e. 1 ➙ 2 ➙ 1 ➙ ...).[86]
Five is conjectured to be the only odd untouchable number, and if this is the case then five will be the only odd prime number that is not the base of an aliquot tree.[87] Meanwhile:
Every odd number greater than is the sum of at most five prime numbers,[88] and
Every odd number greater than is conjectured to be expressible as the sum of three prime numbers. Helfgott has provided a proof of this[89] (also known as the odd Goldbach conjecture) that is already widely acknowledged by mathematicians as it still undergoes peer-review.
There are five countably infinite Ramsey classes of permutations, where the age of each countable homogeneous permutation forms an individual Ramsey class of objects such that, for each natural number and each choice of objects , there is no object where in any -coloring of all subobjects of isomorphic to there exists a monochromatic subobject isomorphic to .[95]: pp.1, 2 Aside from , the five classes of Ramsey permutations are the classes of:[95]: p.4
The chromatic number of the plane is at least five, depending on the choice of set-theoretical axioms: the minimum number of colors required to color the plane such that no pair of points at a distance of 1 has the same color.[104][105] Whereas the hexagonal Golomb graph and the regular hexagonal tiling generate chromatic numbers of 4 and 7, respectively, a chromatic coloring of 5 can be attained under a more complicated graph where multiple four-coloring Moser spindles are linked so that no monochromatic triples exist in any coloring of the overall graph, as that would generate an equilateral arrangement that tends toward a purely hexagonal structure.
Space-fillingconvex polyhedra with regular faces: the triangular prism, hexagonal prism, cube, truncated octahedron, and gyrobifastigium.[112] The cube is the only Platonic solid that can tessellate space on its own, and the truncated octahedron and gyrobifastigium are the only Archimedean and Johnson solids, respectively, that can tessellate space with their own copies.
The grand antiprism, which is the only known non-Wythoffian construction of a uniform polychoron, is made of twenty pentagonal antiprisms and three hundred tetrahedra, with a total of one hundred vertices and five hundred edges.[118]
Overall, the fourth dimension contains five fundamental Weyl groups that form a finite number of uniform polychora based on only twenty-five uniform polyhedra: , , , , and , accompanied by a fifth or sixth general group of unique 4-prisms of Platonic and Archimedean solids. There are also a total of five Coxeter groups that generate non-prismatic Euclidean honeycombs in 4-space, alongside five compact hyperbolic Coxeter groups that generate five regular compact hyperbolic honeycombs with finite facets, as with the order-5 5-cell honeycomb and the order-5 120-cell honeycomb, both of which have five cells around each face. Compact hyperbolic honeycombs only exist through the fourth dimension, or rank 5, with paracompact hyperbolic solutions existing through rank 10. Likewise, analogues of four-dimensional hexadecachoric or icositetrachoric symmetry do not exist in dimensions ⩾ ; however, there are prismatic groups in the fifth dimension which contains prisms of regular and uniform 4-polytopes that have and symmetry. There are also five regular projective 4-polytopes in the fourth dimension, all of which are hemi-polytopes of the regular 4-polytopes, with the exception of the 5-cell.[121] Only two regular projective polytopes exist in each higher dimensional space.
There are five complex exceptional Lie algebras: , , , , and . The smallest of these, of real dimension 28, can be represented in five-dimensional complex space and projected as a ball rolling on top of another ball, whose motion is described in two-dimensional space.[126] is the largest, and holds the other four Lie algebras as subgroups, with a representation over in dimension 496. It contains an associated lattice that is constructed with one hundred and twenty quaternionic unit icosians that make up the vertices of the 600-cell, whose Euclidean norms define a quadratic form on a lattice structure isomorphic to the optimal configuration of spheres in eight dimensions.[127] This sphere packing lattice structure in 8-space is held by the vertex arrangement of the 521 honeycomb, one of five Euclidean honeycombs that admit Gosset's original definition of a semi-regular honeycomb, which includes the three-dimensional alternated cubic honeycomb.[128][129] The smallest simple isomorphism found inside finite simple Lie groups is ,[130] where here represents alternating groups and classical Chevalley groups. In particular, the smallest non-solvable group is the alternating group on five letters, which is also the smallest simple non-abelian group.
There are five non-supersingular prime numbers — 37, 43, 53, 61, and 67 — less than 71, which is the largest of fifteen supersingular primes that divide the order of the friendly giant, itself the largest sporadic group.[134] In particular, a centralizer of an element of order 5 inside this group arises from the product between Harada–Norton sporadic group and a group of order 5.[135][136] On its own, can be represented using standard generators that further dictate a condition where .[137][138] This condition is also held by other generators that belong to the Tits group,[139] the only finite simple group that is a non-strict group of Lie type that can also classify as sporadic. Furthermore, over the field with five elements, holds a 133-dimensional representation where 5 acts on a commutative yet non-associative product as a 5-modular analogue of the Griess algebra♮,[140] which holds the friendly giant as its automorphism group.
All multiples of 5 will end in either 5 or 0, and vulgar fractions with 5 or 2 in the denominator do not yield infinite decimal expansions because they are prime factors of 10, the base.
In the powers of 5, every power ends with the number five, and from 53 onward, if the exponent is odd, then the hundreds digit is 1, and if it is even, the hundreds digit is 6.
A number raised to the fifth power always ends in the same digit as .
The god Shiva has five faces[154] and his mantra is also called panchakshari (five-worded) mantra.
The goddess Saraswati, goddess of knowledge and intellectual is associated with panchami or the number 5.
There are five elements in the universe according to Hindu cosmology: dharti, agni, jal, vayu evam akash (earth, fire, water, air and space respectively).
The most sacred tree in Hinduism has 5 leaves in every leaf stunt.[clarification needed]
The Khamsa, an ancient symbol shaped like a hand with four fingers and one thumb, is used as a protective amulet by Jews; that same symbol is also very popular in Arabic culture, known to protect from envy and the evil eye.[161]
Sikhism
The five sacred Sikh symbols prescribed by Guru Gobind Singh are commonly known as panj kakars or the "Five Ks" because they start with letter K representing kakka (ਕ) in the Punjabi language's Gurmukhi script. They are: kesh (unshorn hair), kangha (the comb), kara (the steel bracelet), kachhehra (the soldier's shorts), and kirpan (the sword) (in Gurmukhi: ਕੇਸ, ਕੰਘਾ, ਕੜਾ, ਕਛਹਰਾ, ਕਿਰਪਾਨ).[162] Also, there are five deadly evils: kam (lust), krodh (anger), moh (attachment), lobh (greed), and ankhar (ego).
In Cantonese, "five" sounds like the word "not" (character: 唔). When five appears in front of a lucky number, e.g. "58", the result is considered unlucky.
In East Asian tradition, there are five elements: (water, fire, earth, wood, and metal).[165] The Japanese names for the days of the week, Tuesday through Saturday, come from these elements via the identification of the elements with the five planets visible with the naked eye.[166] Also, the traditional Japanese calendar has a five-day weekly cycle that can be still observed in printed mixed calendars combining Western, Chinese-Buddhist, and Japanese names for each weekday.
In numerology, 5 or a series of 555, is often associated with change, evolution, love and abundance.
Members of The Nation of Gods and Earths, a primarily African American religious organization, call themselves the "Five-Percenters" because they believe that only 5% of mankind is truly enlightened.[167]
The Mach Five Mahha-gō? (マッハ号), the racing car Speed Racer (Go Mifune in the Japanese version) drives in the anime series of the same name (known as "Mach Go! Go! Go!" in Japan)
In the Yu-Gi-Oh! series, "The Big Five" are a group of five villainous corporate executives who work for KaibaCorp (Gansley, Crump, Johnson, Nezbitt and Leichter).
Myst uses the number 5 as a unique base counting system. In The Myst Reader series, it is further explained that the number 5 is considered a holy number in the fictional D'ni society.
Number Five is also a character in The Umbrella Academy comic book and TV series adaptation[174]
V for Vendetta (2005), produced by Warner Bros., directed by James McTeigue, and adapted from Alan Moore's graphic novel V for Vendetta prominently features number 5 and Roman Numeral V; the story is based on the historical event in which a group of men attempted to destroy Parliament on November 5, 1605[178]
Music
Modern musical notation uses a musical staff made of five horizontal lines.[179]
A perfect fifth is the most consonant harmony, and is the basis for most western tuning systems.[181]
In harmonics, the fifth partial (or 4th overtone) of a fundamental has a frequency ratio of 5:1 to the frequency of that fundamental. This ratio corresponds to the interval of 2 octaves plus a pure major third. Thus, the interval of 5:4 is the interval of the pure third. A majortriadchord when played in just intonation (most often the case in a cappella vocal ensemble singing), will contain such a pure major third.
Using the Latin root, five musicians are called a quintet.[182]
Five is the lowest possible number that can be the top number of a time signature with an asymmetric meter.
The Jackson 5, American pop rock group featuring various members of the Jackson family; they were billed (and active) as The Jackson 5, 1966–1975[192]
Hi-5, Australian pop kids group, where it has several international adaptations, and several members throughout the history of the band. It was also a TV show.
We Five: American folk rock group active 1965–1967 and 1968–1977
Odyssey 5, a 2002 science fiction television series[201]
Tillbaka till Vintergatan, a Swedish children's television series featuring a character named "Femman" (meaning five), who can only utter the word 'five'.
The Five(talk show): Fox News Channel roundtable current events television show, premiered 2011, so-named for its panel of five commentators.
Yes! PreCure 5 is a 2007 anime series which follows the adventures of Nozomi and her friends. It is also followed by the 2008 sequel Yes! Pretty Cure 5 GoGo!
The Quintessential Quintuplets is a 2019 slice of life romance anime series which follows the everyday life of five identical quintuplets and their interactions with their tutor. It has two seasons, and a final movie is scheduled in summer 2022.
The Olympic Games have five interlocked rings as their symbol, representing the number of inhabited continents represented by the Olympians (Europe, Asia, Africa, Australia and Oceania, and the Americas).[204]
The number 5 is used to represent the position of center.
Each team has five players on the court at a given time. Thus, the phrase "five on five" is commonly used to describe standard competitive basketball.[205]
The "5-second rule" refers to several related rules designed to promote continuous play. In all cases, violation of the rule results in a turnover.
Under the FIBA (used for all international play, and most non-US leagues) and NCAA women's rule sets, a team begins shooting bonus free throws once its opponent has committed five personal fouls in a quarter.
Under the FIBA rules, A player fouls out and must leave the game after committing five fouls
There are five different ways that a player can score a goal (teams at even strength, team on the power play, team playing shorthanded, penalty shot, and empty net).[208]
The area between the goaltender's legs is known as the five-hole.[209]
In most rugby league competitions, the starting left wing wears this number. An exception is the Super League, which uses static squad numbering.
In radio communication, the term "Five by five" is used to indicate perfect signal strength and clarity.[212]
On almost all devices with a numeric keypad such as telephones, computers, etc., the 5 key has a raised dot or raised bar to make dialing easier. Persons who are blind or have low vision find it useful to be able to feel the keys of a telephone. All other numbers can be found with their relative position around the 5 button (on computer keyboards, the 5 key of the numpad has the raised dot or bar, but the 5 key that shifts with % does not).[213]
On most telephones, the 5 key is associated with the letters J, K, and L,[214] but on some of the BlackBerry phones, it is the key for G and H.
In the computer game Riven, 5 is considered a holy number, and is a recurring theme throughout the game, appearing in hundreds of places, from the number of islands in the game to the number of bolts on pieces of machinery.
The drink Five Alive is named for its five ingredients. The drink punch derives its name after the Sanskrit पञ्च (pañc) for having five ingredients.[228]
^Georges Ifrah, The Universal History of Numbers: From Prehistory to the Invention of the Computer transl. David Bellos et al. London: The Harvill Press (1998): 394, Fig. 24.65
^ abcdefgWeisstein, Eric W. "5". mathworld.wolfram.com. Retrieved 2020-07-30.
^Bourcereau (2015-08-19). "28". Prime Curios!. PrimePages. Retrieved 2022-10-13. The only known number which can be expressed as the sum of the first non-negative integers (1 + 2 + 3 + 4 + 5 + 6 + 7), the first primes (2 + 3 + 5 + 7 + 11) and the first non-primes (1 + 4 + 6 + 8 + 9). There is probably no other number with this property.
Only twelve integers up to 33 cannot be expressed as the sum of five non-zero squares: {1, 2, 3, 4, 6, 7, 9, 10, 12, 15, 18, 33} where 2, 3 and 7 are the only such primes without an expression.
^Alon, Noga; Grytczuk, Jaroslaw; Hałuszczak, Mariusz; Riordan, Oliver (2002). "Nonrepetitive colorings of graphs"(PDF). Random Structures & Algorithms. 2 (3–4): 337. doi:10.1002/rsa.10057. MR1945373. S2CID5724512. A coloring of the set of edges of a graph G is called non-repetitive if the sequence of colors on any path in G is non-repetitive...In Fig. 1 we show a non-repetitive 5-coloring of the edges of P... Since, as can easily be checked, 4 colors do not suffice for this task, we have π(P) = 5.
^Wills, J. M. (1987). "The combinatorially regular polyhedra of index 2". Aequationes Mathematicae. 34 (2–3): 206–220. doi:10.1007/BF01830672. S2CID121281276.
"In tables 4 to 8, we list the seventy-five nondihedral uniform polyhedra, as well as the five pentagonal prisms and antiprisms, grouped by generating Schwarz triangles." Appendix II: Uniform Polyhedra.
^Cinalli, G.; Maixner, W. J.; Sainte-Rose, C. (2012-12-06). Pediatric Hydrocephalus. Springer Science & Business Media. p. 19. ISBN978-88-470-2121-1. The five appendages of the starfish are thought to be homologous to five human buds
^Kisia, S. M. (2010), Vertebrates: Structures and Functions, Biological Systems in Vertebrates, CRC Press, p. 106, ISBN978-1-4398-4052-8, The typical limb of tetrapods is the pentadactyl limb (Gr. penta, five) that has five toes. Tetrapods evolved from an ancestor that had limbs with five toes. ... Even though the number of digits in different vertebrates may vary from five, vertebrates develop from an embryonic five-digit stage.
^Desai, Anjali H. (2007). India Guide Gujarat. India Guide Publications. p. 36. ISBN978-0-9789517-0-2. ...he prescribed five sacred symbols to create a unified ident
^Gaskin, Shelley (2009-01-31). Go! with 2007. CRC PRESS. p. 615. ISBN978-0-13-239020-0. the number 5 key has a raised bar or dot that helps you identify it by touch
^Popular Science. Bonnier Corporation. 1937. p. 32. ...another picture of one of the world's most famous babies was made. Fred Davis is official photographer of the Dionne quintuplets...
^Smith, Rich (2010-09-01). Fifth Amendment: The Right to Fairness. ABDO Publishing Company. p. 20. ISBN978-1-61784-256-6. Someone who stands on his or her right to avoid self incrimination is said in street language to be "taking the Fifth," or "pleading the Fifth."
^Veith (Jr.), Gene Edward; Wilson, Douglas (2009). Omnibus IV: The Ancient World. Veritas Press. p. 52. ISBN978-1-932168-86-0. The most common accentual-syllabic lines are five-foot iambic lines (iambic pentameter)