Product yields of up to 85% can be achieved with a continuous process using a nickel-hydrotalcite catalyst.
Similarly, the hemiacetal 2-hydroxytetrahydropyran[3] that is formed from dihydropyran with hydrochloric acid can be converted to 5-amino-1-pentanol by reductive amidation with ammonia and hydrogen upon water elimination.[4]
Properties
5-Amino-1-pentanol forms white crystalline clumps at solidification temperatures around 35 °C, which dissolve in water, ethanol, and acetone.[5] The aqueous solution (500 g-l−1) reacts strongly alkaline (pH 13.2 at 20 °C).[6]
Reactions
Amino alcohols such as 5-amino-1-pentanol have been studied for their suitability of absorption of carbon dioxide.[7][8]
5-Amino-1-pentanol dehydrates when heated over ytterbium(III) oxide (Yb2O3) to give 4-penten-1-amine (I). Also formed piperidine (II), 2,3,4,5-tetrahydropyridine (III), and 1-pentylamine (IV).[9]
Valerolactam could be of relevance for polyamide 5. Polyamide 5 has garnered little attention so far but is of interest due to its ferroelectricity.[14]
^X. Li; J. Tian; H. Liu; X. Hu; J. Zhang; C. Xia; J. Chen; H. Liu; Z. Huang (2020), "Efficient Synthesis of 5-Amino-1-pentanol from Biomass-Derived Dihydropyran over Hydrotalcite-Based Ni–Mg3AlOx Catalysts", ACS Sustain. Chem. Eng., 8 (23): 6352–6362, doi:10.1021/acssuschemeng.0c00394, S2CID216508238
^T. Oishi; M. Kanemoto; R. Swasono; N. Matsumori; M. Murata (2008), "Combinatorial Synthesis of the 1,5-Polyol System Based on Cross Metathesis: Structure Revision of Amphidinol 3", Org. Lett., 10 (22): 5203–5206, doi:10.1021/ol802168r, PMID18959425
^J. Zhang; et al. (2021), "Reductive amination of bio-based 2-hydroxytetrahydropyran to 5-amino-1-pentanol over nano-Ni-Al2O3 catalysts", New J. Chem., vol. 45, no. 9, pp. 4236–4245, doi:10.1039/D0NJ04962J, S2CID234007765
^William M. Haynes (2017), CRC Handbook of Chemistry and Physics (97th ed.), Boca Raton, FL: CRC Press, pp. 3–22, ISBN978-1-4987-5429-3
^S. Oa; B.-J. Kim; J.-W. Park (2020), "Effects of carbonation on carbon dioxide capture and the mechanical properties of concrete with amine sorbents", Adv. Cement Res., 32 (11): 502–509, doi:10.1680/jadcr.18.00198, S2CID155957571
^K. Ohta; Y. Yamada; S. Sato (2016), "Dehydration of 5-amino-1-pentanol over rare earth oxides", Appl. Catal A: General, 517: 73–80, doi:10.1016/j.apcata.2016.03.001
^US 4209607, S.W. Shalaby & D.D. Jamiolkowski, "Polyesteramides derived from bis-oxamidodiols and dicarboxylic acids", published 1980-6-24, assigned to Ethicon, Inc.
^S.K. Murase; J. Puiggali (2014), "Poly(ester amides)s: Recent Developments on Synthesis and Applications", in S.G. Kumbar; C.T. Laurencin; M. Deng (eds.), Natural and Synthetic Biomedical Polymers, Amsterdam: Elsevier, pp. 154–166, ISBN978-0-12-396983-5
^M. Trincado; K. Kühlein; H. Grützmacher (2011), "Metal-Ligand Cooperation in the Catalytic Dehydrogenative Coupling (DHC) of Polyalcohols to Carboxylic Acid Derivatives", Chem. Eur. J., 17 (42): 11905–11913, doi:10.1002/chem.201101084, PMID21901769
^T. von Tiedemann; S. Anwas; U. Kemmer-Jonas; K. Asadi; H. Frey (2020), "Synthesis and solution processing of nylon-5 ferroelectric thin films: The renaissance of odd-nylons?", Macromol. Chem. Phys., 221 (5): 1900468, doi:10.1002/macp.201900468, hdl:21.11116/0000-0005-A118-A, S2CID213517034