Bone morphogenetic protein 2 is shown to stimulate the production of bone.[14][15]Recombinant human protein (rhBMP-2) is currently available for orthopaedic usage in the United States.[16] Implantation of BMP-2 is performed using a variety of biomaterial carriers ("metals, ceramics, polymers, and composites"[17]) and delivery systems ("hydrogel, microsphere, nanoparticles, and fibers"[17]). While used primarily in orthopedic procedures such as spinal fusion,[18][19] BMP-2 has also found its way into the field of dentistry.[20][21][22]
The use of dual tapered threaded fusion cages and recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge obtained and maintained intervertebral spinal fusion, improved clinical outcomes, and reduced pain after anterior lumbar interbody arthrodesis in patients with degenerative lumbar disc disease.[18] As an adjuvant to allograft bone or as a replacement for harvested autograft, bone morphogenetic proteins (BMPs) appear to improve fusion rates after spinal arthrodesis in both animal models and humans, while reducing the donor-site morbidity previously associated with such procedures.[19]
A study published in 2011 noted "reports of frequent and occasionally catastrophic complications associated with use of [BMP-2] in spinal fusion surgeries", with a level of risk far in excess of estimates reported in earlier studies.[23][24] An additional review by Agrawal and Sinha of BMP-2 and its common delivery systems in early 2016 showed how "problems like ectopic growth, lesser protein delivery, [and] inactivation of the protein" reveal a further need "to modify the available carrier systems as well as explore other biomaterials with desired properties."[17]
^Nickel J, Dreyer MK, Kirsch T, Sebald W (2001). "The crystal structure of the BMP-2:BMPR-IA complex and the generation of BMP-2 antagonists". J Bone Joint Surg Am. 83-A Suppl 1 (Pt 1): S7–14. PMID11263668.
^Geiger M, Li RH, Friess W (November 2003). "Collagen sponges for bone regeneration with rhBMP-2". Adv. Drug Deliv. Rev. 55 (12): 1613–29. doi:10.1016/j.addr.2003.08.010. PMID14623404.
^Khan SN, Lane JM (May 2004). "The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in orthopaedic applications". Expert Opin Biol Ther. 4 (5): 741–8. doi:10.1517/14712598.4.5.741. PMID15155165. S2CID45699304.
^ abcAgrawal, V; Sinha, M. (2016). "A review on carrier systems for bone morphogenetic protein-2". Journal of Biomedical Materials Research Part B: Applied Biomaterials. Early View (4): 904–925. doi:10.1002/jbm.b.33599. PMID26728994.
^ abBurkus JK, Gornet MF, Schuler TC, Kleeman TJ, Zdeblick TA (May 2009). "Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2". J Bone Joint Surg Am. 91 (5): 1181–9. doi:10.2106/JBJS.G.01485. PMID19411467.
^Schlegel KA, Thorwarth M, Plesinac A, Wiltfang J, Rupprecht S (December 2006). "Expression of bone matrix proteins during the osseus healing of topical conditioned implants: an experimental study". Clinical Oral Implants Research. 17 (6): 666–72. doi:10.1111/j.1600-0501.2006.01214.x. PMID17092225.
^Schliephake H, Aref A, Scharnweber D, Bierbaum S, Roessler S, Sewing A (October 2005). "Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation". Clinical Oral Implants Research. 16 (5): 563–9. doi:10.1111/j.1600-0501.2005.01143.x. PMID16164462.
Nickel J, Dreyer MK, Kirsch T, Sebald W (2001). "The crystal structure of the BMP-2:BMPR-IA complex and the generation of BMP-2 antagonists". J Bone Joint Surg Am. 83-A Suppl 1 (Pt 1): S7–14. PMID11263668.
Marie PJ, Debiais F, Haÿ E (2002). "Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling". Histol. Histopathol. 17 (3): 877–85. doi:10.14670/HH-17.877. PMID12168799.