Share to: share facebook share twitter share wa share telegram print page

Central series

In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings (considered as Lie algebras), it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal.

This article uses the language of group theory; analogous terms are used for Lie algebras.

A general group possesses a lower central series and upper central series (also called the descending central series and ascending central series, respectively), but these are central series in the strict sense (terminating in the trivial subgroup) if and only if the group is nilpotent. A related but distinct construction is the derived series, which terminates in the trivial subgroup whenever the group is solvable.

Definition

A central series is a sequence of subgroups

such that the successive quotients are central; that is, , where denotes the commutator subgroup generated by all elements of the form , with g in G and h in H. Since , the subgroup is normal in G for each i. Thus, we can rephrase the 'central' condition above as: is normal in G and is central in for each i. As a consequence, is abelian for each i.

A central series is analogous in Lie theory to a flag that is strictly preserved by the adjoint action (more prosaically, a basis in which each element is represented by a strictly upper triangular matrix); compare Engel's theorem.

A group need not have a central series. In fact, a group has a central series if and only if it is a nilpotent group. If a group has a central series, then there are two central series whose terms are extremal in certain senses. Since A0 = {1}, the center Z(G) satisfies A1Z(G). Therefore, the maximal choice for A1 is A1 = Z(G). Continuing in this way to choose the largest possible Ai + 1 given Ai produces what is called the upper central series. Dually, since An = G, the commutator subgroup [G, G] satisfies [G, G] = [G, An] ≤ An − 1. Therefore, the minimal choice for An − 1 is [G, G]. Continuing to choose Ai minimally given Ai + 1 such that [G, Ai + 1] ≤ Ai produces what is called the lower central series. These series can be constructed for any group, and if a group has a central series (is a nilpotent group), these procedures will yield central series.

Lower central series

The lower central series (or descending central series) of a group G is the descending series of subgroups

G = G1G2 ⊵ ⋯ ⊵ Gn ⊵ ⋯,

where, for each n,

,

the subgroup of G generated by all commutators with and . Thus, , the derived subgroup of G, while , etc. The lower central series is often denoted . We say the series terminates or stablizes when , and the smallest such n is the length of the series.

This should not be confused with the derived series, whose terms are

,

not . The two series are related by . For instance, the symmetric group S3 is solvable of class 2: the derived series is S3 ⊵ {e, (1 2 3), (1 3 2)} ⊵ {e}. But it is not nilpotent: its lower central series S3 ⊵ {e, (1 2 3), (1 3 2)} does not terminate in {e}. A nilpotent group is a solvable group, and its derived length is logarithmic in its nilpotency class (Schenkman 1975, p. 201,216).

For infinite groups, one can continue the lower central series to infinite ordinal numbers via transfinite recursion: for a limit ordinal λ, define

.

If for some ordinal λ, then G is said to be a hypocentral group. For every ordinal λ, there is a group G such that , but for all , (Malcev 1949).

If is the first infinite ordinal, then is the smallest normal subgroup of G such that the quotient is residually nilpotent, that is, such that every non-identity element has a non-identity homomorphic image in a nilpotent group (Schenkman 1975, p. 175,183). In the field of combinatorial group theory, it is an important and early result that free groups are residually nilpotent. In fact the quotients of the lower central series are free abelian groups with a natural basis defined by basic commutators, (Hall 1959, Ch. 11).

If for some finite n, then is the smallest normal subgroup of G with nilpotent quotient, and is called the nilpotent residual of G. This is always the case for a finite group, and defines the term in the lower Fitting series for G.

If for all finite n, then is not nilpotent, but it is residually nilpotent.

There is no general term for the intersection of all terms of the transfinite lower central series, analogous to the hypercenter (below).

Upper central series

The upper central series (or ascending central series) of a group G is the sequence of subgroups

where each successive group is defined by:

and is called the ith center of G (respectively, second center, third center, etc.). In this case, is the center of G, and for each successive group, the factor group is the center of , and is called an upper central series quotient. Again, we say the series terminates if it stabilizes into a chain of equalities, and its length is the number of distinct groups in it.

For infinite groups, one can continue the upper central series to infinite ordinal numbers via transfinite recursion: for a limit ordinal λ, define

The limit of this process (the union of the higher centers) is called the hypercenter of the group.

If the transfinite upper central series stabilizes at the whole group, then the group is called hypercentral. Hypercentral groups enjoy many properties of nilpotent groups, such as the normalizer condition (the normalizer of a proper subgroup properly contains the subgroup), elements of coprime order commute, and periodic hypercentral groups are the direct sum of their Sylow p-subgroups (Schenkman 1975, Ch. VI.3). For every ordinal λ there is a group G with Zλ(G) = G, but Zα(G) ≠ G for α < λ, (Gluškov 1952) and (McLain 1956).

Connection between lower and upper central series

There are various connections between the lower central series (LCS) and upper central series (UCS) (Ellis 2001), particularly for nilpotent groups.

For a nilpotent group, the lengths of the LCS and the UCS agree, and this length is called the nilpotency class of the group. However, the LCS and UCS of a nilpotent group may not necessarily have the same terms. For example, while the UCS and LCS agree for the cyclic group C2 ⊵ {e} and quaternion group Q8 ⊵ {1, −1} ⊵ {1}, the UCS and LCS of their direct product C2 × Q8 do not agree: its LCS is C2 × Q8 ⊵ {e} × {−1, 1} ⊵ {e} × {1}, while its UCS is C2 × Q8C2 × {−1, 1} ⊵ {e} × {1}.

A group is abelian if and only if the LCS terminates at the first step (the commutator subgroup is the trivial subgroup), if and only if the UCS terminates at the first step (the center is the entire group).

By contrast, the LCS terminates at the zeroth step if and only if the group is perfect (the commutator is the entire group), while the UCS terminates at the zeroth step if and only if the group is centerless (trivial center), which are distinct concepts. For a perfect group, the UCS always stabilizes by the first step (Grün's lemma). However, a centerless group may have a very long LCS: a free group on two or more generators is centerless, but its LCS does not stabilize until the first infinite ordinal. This shows that the lengths of the LCS and UCS need not agree in general.

Refined central series

In the study of p-groups (which are always nilpotent), it is often important to use longer central series. An important class of such central series are the exponent-p central series; that is, a central series whose quotients are elementary abelian groups, or what is the same, have exponent p. There is a unique most quickly descending such series, the lower exponent-p central series λ defined by:

, and
.

The second term, , is equal to , the Frattini subgroup. The lower exponent-p central series is sometimes simply called the p-central series.

There is a unique most quickly ascending such series, the upper exponent-p central series S defined by:

S0(G) = 1
Sn+1(G)/Sn(G) = Ω(Z(G/Sn(G)))

where Ω(Z(H)) denotes the subgroup generated by (and equal to) the set of central elements of H of order dividing p. The first term, S1(G), is the subgroup generated by the minimal normal subgroups and so is equal to the socle of G. For this reason the upper exponent-p central series is sometimes known as the socle series or even the Loewy series, though the latter is usually used to indicate a descending series.

Sometimes other refinements of the central series are useful, such as the Jennings series κ defined by:

κ1(G) = G, and
κn + 1(G) = [G, κn(G)] (κi(G))p, where i is the smallest integer larger than or equal to n/p.

The Jennings series is named after Stephen Arthur Jennings who used the series to describe the Loewy series of the modular group ring of a p-group.

See also

References

  • Ellis, Graham (October 2001), "On the Relation between Upper Central Quotients and Lower Central Series of a Group", Transactions of the American Mathematical Society, 353 (10): 4219–4234, doi:10.1090/S0002-9947-01-02812-4, JSTOR 2693793
  • Gluškov, V. M. (1952), "On the central series of infinite groups", Mat. Sbornik, New Series, 31: 491–496, MR 0052427
  • Hall, Marshall (1959), The theory of groups, Macmillan, MR 0103215
  • Malcev, A. I. (1949), "Generalized nilpotent algebras and their associated groups", Mat. Sbornik, New Series, 25 (67): 347–366, MR 0032644
  • McLain, D. H. (1956), "Remarks on the upper central series of a group", Proc. Glasgow Math. Assoc., 3: 38–44, doi:10.1017/S2040618500033414, MR 0084498
  • Schenkman, Eugene (1975), Group theory, Robert E. Krieger Publishing, ISBN 978-0-88275-070-5, MR 0460422, especially chapter VI.

Read other articles:

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (September 2021) (Learn how and when to remove this template message)AwardAceh MedalAceh Medal, 1873-1874TypeCampaign medalPresented bythe  Kingdom of the NetherlandsCampaign(s)First Aceh WarSecond Aceh WarEstablishedMay 12, 1874Ribbon bar of the medal The Aceh Medal (Du...

 

العلاقات المارشالية الرواندية جزر مارشال رواندا   جزر مارشال   رواندا تعديل مصدري - تعديل   العلاقات المارشالية الرواندية هي العلاقات الثنائية التي تجمع بين جزر مارشال ورواندا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين:...

 

  ميّز عن مسجد وزاوية الدمرداش. جامع الأطروش جامع الأطروش إحداثيات 36°11′46″N 37°09′48″E / 36.196055°N 37.163444°E / 36.196055; 37.163444 معلومات عامة القرية أو المدينة حلب الدولة بلاد الشام سنة التأسيس 1398  تاريخ بدء البناء 801هـ الموافق 1398م المواصفات عدد المآذن 1 عدد القباب 1 ال�...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) إدي أدكوك   معلومات شخصية الميلاد 21 يونيو 1938 (85 سنة)  مواطنة الولايات المتحدة  الحياة العملية المهنة عازف بانجو  تعديل مصدري - تعديل   إدي أدكوك (بال

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) دل وود معلومات شخصية الميلاد 22 فبراير 1920  ناشفيل، تينيسي  تاريخ الوفاة 3 أكتوبر 1989 (69 سنة)   سبب الوفاة سكتة دماغية  مواطنة الولايات المتحدة  الحيا...

 

Glasdrum Wood National Nature ReserveIUCN category IV (habitat/species management area)[1]LocationAppin, Argyll and Bute, ScotlandCoordinates56°33′31″N 5°15′16″W / 56.5586°N 5.2544°W / 56.5586; -5.2544Area169 ha (420 acres)[2]Established1967Governing bodyNatureScotGlasdrum Wood National Nature Reserve Glasdrum Wood (Scottish Gaelic: Coille a’ Ghlasdroma)[3] is national nature reserve (NNR) at the head of Loch Creran in Ar...

Para la localidad estadounidense, véase Dunedin (Florida). DunedinDunedinŌtepoti Ciudad Otros nombres: Edinburgh of the South[2]​Dunners (coloquial)[3]​ DunedinLocalización de Dunedin en Nueva ZelandaCoordenadas 45°52′27″S 170°30′13″E / -45.874166666667, 170.50361111111Entidad Ciudad • País  Nueva Zelanda • Región  OtagoAlcalde Dave CullEventos históricos   • Fundación 1300 por los maoríes[1]​1848 por los ...

 

Destroyed cathedral of Somalia Mogadishu CathedralCattedrale di MogadiscioReligionAffiliationCatholicEcclesiastical or organizational statusCathedralYear consecrated1928LocationLocationMogadishu, SomaliaGeographic coordinates2°02′09″N 45°20′30″E / 2.035736°N 45.341614°E / 2.035736; 45.341614ArchitectureStyleNorman GothicCompleted1928 Mogadishu Cathedral (Italian: Cattedrale di Mogadiscio) is a ruined Catholic cathedral located in Mogadishu, Somalia. Between...

 

  لمعانٍ أخرى، طالع ريتشارد جونز (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) ريتشارد جونز   معلومات شخصية تاريخ الميلاد 13 يونيو 1892  الوفاة 8 ديسمبر 1945 (53 سنة)   شيكاغو  مواطنة الول�...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) رودولفو باركر معلومات شخصية الميلاد 1 نوفمبر 1957 (66 سنة)  سان سلفادور  مواطنة السلفادور  الحياة العملية المهنة سياسي،  ومحامٍ  اللغات الإسبانية  ت

 

Film Titel Der König von Berlin Produktionsland Deutschland Originalsprache Deutsch Erscheinungsjahr 2017 Länge 88 Minuten Altersfreigabe FSK 12[1] Stab Regie Lars Kraume Drehbuch Lars Kraume Produktion Viola JägerUlli WeberAnita Schneider Musik Christoph M. KaiserJulian Maas Kamera Jens Harant Schnitt Stefan Blau Besetzung Florian Lukas: Carsten Lanner Anna Fischer: Carola Rimschow Max Hopp: Kolbe, Leiter der Mordkommission Marc Hosemann: Toni Matthes Monika Hansen: Claire Ma...

 

Bermuda op de Olympische Spelen Land Bermuda IOC-landcode BER NOC Bermuda Olympic Associationexterne link Olympische Zomerspelen 1972 in München Vlaggendrager Kirk Cooper Aantal deelnemers 11 Aantal disciplines 3 Medailles goud0 zilver0 brons0 totaal0 Bermuda op de Zomerspelen 1936 · 1948 · 1952 · 1956 · 1960 · 1964 · 1968 · 1972 · 1976 · 1980 · 1984 · 1988 · 1992 · 1996 · 2000 · 2004 · 2008 · 2012 · 2016 · 2020 Bermuda op de Winterspelen 1992 · 1994 · 1998 · 2002...

 Nota: Para outros significados de Mérida, veja Mérida. Mérida Estado Mérida Município Municipio Libertador Fundação 9 de outubro de 1558 Área 2 050 km² População (2001) 840 000 habitantes Densidade 1011 59 hab./km² Gentílico (es) Merideño/a Altitude 1 630 metros Prefeito Juan Barreto (2004 – 2008) Website Página da prefeitura 8° 35' 12 N 71° 9' 29 O Cidade da Venezuela Mérida (nome completo Santiago de los Caballeros de Mérida) é uma cidade vene...

 

Ōmura MasujirōŌmura MasujirōLahir(1824-05-30)30 Mei 1824Yamaguchi, domain Chōshū, JepangMeninggal7 Desember 1869(1869-12-07) (umur 45)Osaka, JepangKebangsaanJepangPekerjaanpemimpin dan ahli teori militerDikenal atasmendirikan Angkatan Darat Kekaisaran Jepang Ini adalah nama Jepang, nama keluarganya adalah Ōmura. Ōmura Masujirō (大村 益次郎code: ja is deprecated , 30 Mei 1824 – 7 Desember 1869) adalah seorang pemimpin dan ahli teori militer Jepang pada zaman Bakumatsu di J...

 

2017 American science fiction thriller television series CounterpartGenre Thriller Science fiction Created byJustin MarksStarring J. K. Simmons Olivia Williams Harry Lloyd Nazanin Boniadi Sara Serraiocco Ulrich Thomsen Nicholas Pinnock Betty Gabriel James Cromwell ComposerJeff RussoCountry of originUnited StatesOriginal languages English German No. of seasons2No. of episodes20ProductionExecutive producers Amy Berg Justin Marks Bard Dorros Keith Redmon Morten Tyldum Jordan Horowitz Gary Gilber...

1981 studio album by The AngelsNight AttackStudio album by The AngelsReleasedNovember 1981StudioEMI 301 Studio, Sydney, AustraliaGenreHard rockLength38:23LabelEpicProducerEd Thacker, John Brewster, Rick BrewsterThe Angels chronology Dark Room(1980) Night Attack(1981) Watch the Red(1983) Singles from Night Attack Night AttackReleased: January 1982 Living on the OutsideReleased: 1982 Night Attack is the fifth studio album by Australian band The Angels, it was released in November 1981 t...

 

American merchant and businessman Dudley Leavitt Pickman Dudley Leavitt Pickman (1779–1846) was an American merchant who built one of the great trading firms in Salem, Massachusetts, during the seaport's ascendancy as a trading power in the late eighteenth and early nineteenth centuries.[1] Pickman was a partner in the firm Devereux, Pickman & Silsbee and a state senator. Among the wealthiest Salem merchants of his day, Pickman used his own clipper ships to trade with the Fa...

 

Flow control device This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Diaphragm valve – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) Rubber Lined Diaphragm Valve Diaphragm valves (or membrane valves) consists of a valve body with two or more po...

The Maine Department of Defense, Veterans, and Emergency Management (DVEM) is a government agency in Maine. It comprises the two components of the Maine National Guard, the Maine Army National Guard and the Maine Air National Guard, the Bureau of Veterans' Affairs, the Maine Emergency Management Agency, and when it is active, the Maine State Guard. The Adjutant General of Maine, Brigadier General Doug A. Farnham, commands the Maine National Guard and serves as the State's Commissioner of Defe...

 

This article is about the municipality in Rajasthan, India. For its namesake district, see Sikar district. For the Russian selo, see Sikar, Republic of Dagestan. City in Rajasthan, IndiaSikarCitySikarLocation in Rajasthan, IndiaShow map of RajasthanSikarSikar (India)Show map of IndiaCoordinates: 27°37′N 75°09′E / 27.62°N 75.15°E / 27.62; 75.15Country IndiaStateRajasthanDistrictSikarSettled1687; 336 years ago (1687)[1]Government...

 
Kembali kehalaman sebelumnya