Measure that is 1 if and only if a specified element is in the set
In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields.
The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome x in the sample spaceX. We can also say that the measure is a single atom at x; however, treating the Dirac measure as an atomic measure is not correct when we consider the sequential definition of Dirac delta, as the limit of a delta sequence[dubious – discuss]. The Dirac measures are the extreme points of the convex set of probability measures on X.
The name is a back-formation from the Dirac delta function; considered as a Schwartz distribution, for example on the real line, measures can be taken to be a special kind of distribution. The identity
which, in the form
is often taken to be part of the definition of the "delta function", holds as a theorem of Lebesgue integration.
Properties of the Dirac measure
Let δx denote the Dirac measure centred on some fixed point x in some measurable space(X, Σ).
δx is a probability measure, and hence a finite measure.
Assuming that the topology T is fine enough that {x} is closed, which is the case in most applications, the support of δx is {x}. (Otherwise, supp(δx) is the closure of {x} in (X, T).) Furthermore, δx is the only probability measure whose support is {x}.
If X is n-dimensional Euclidean spaceRn with its usual σ-algebra and n-dimensional Lebesgue measureλn, then δx is a singular measure with respect to λn: simply decompose Rn as A = Rn \ {x} and B = {x} and observe that δx(A) = λn(B) = 0.
A discrete measure is similar to the Dirac measure, except that it is concentrated at countably many points instead of a single point. More formally, a measure on the real line is called a discrete measure (in respect to the Lebesgue measure) if its support is at most a countable set.