Share to: share facebook share twitter share wa share telegram print page

Electrowetting

Electrowetting is the modification of the wetting properties of a surface (which is typically hydrophobic) with an applied electric field.

History

The electrowetting of mercury and other liquids on variably charged surfaces was probably first explained by Gabriel Lippmann in 1875[1] and was certainly observed much earlier. A. N. Frumkin used surface charge to change the shape of water drops in 1936.[2] The term electrowetting was first introduced in 1981 by G. Beni and S. Hackwood to describe an effect proposed for designing a new type of display device for which they received a patent.[3] The use of a "fluid transistor" in microfluidic circuits for manipulating chemical and biological fluids was first investigated by J. Brown in 1980 and later funded in 1984–1988 under NSF Grants 8760730 & 8822197,[4] employing insulating dielectric and hydrophobic layer(s) (EWOD), immiscible fluids, DC or RF power; and mass arrays of miniature interleaved (saw tooth) electrodes with large or matching indium tin oxide (ITO) electrodes to digitally relocate nano droplets in linear, circular, and directed paths, pump or mix fluids, fill reservoirs, and control fluid flow electronically or optically. Later, in collaboration with J. Silver at the NIH, EWOD-based electrowetting was disclosed for single and immiscible fluids to move, separate, hold, and seal arrays of digital PCR sub-samples.[5]

Electrowetting using an insulating layer on top of a bare electrode was later studied by Bruno Berge in 1993.[6] Electrowetting on this dielectric-coated surface is called electrowetting-on-dielectric (EWOD)[7] to distinguish it from the conventional electrowetting on the bare electrode. Electrowetting can be demonstrated by replacing the metal electrode in the EWOD system by a semiconductor.[8][9] Electrowetting is also observed when a reverse bias is applied to a conducting droplet (e.g. mercury) which has been placed directly onto a semiconductor surface (e.g. silicon) to form a Schottky contact in a Schottky diode electrical circuit configuration – this effect has been termed ‘Schottky electrowetting’.[10]

Microfluidic manipulation of liquids by electrowetting was demonstrated first with mercury droplets in water[11] and later with water in air[7] and water in oil.[12] Manipulation of droplets on a two-dimensional path was demonstrated later.[13][14] If the liquid is discretized and programmably manipulated, the approach is called "Digital Microfluidic Circuits"[15][16] or "Digital Microfluidics".[17] Discretization by electrowetting-on-dielectric (EWOD) was first demonstrated by Cho, Moon, and Kim.[18]

Electrowetting theory

Liquid, Isolator, Substrate

The electrowetting effect has been defined as "the change in solid-electrolyte contact angle due to an applied potential difference between the solid and the electrolyte". The phenomenon of electrowetting can be understood in terms of the forces that result from the applied electric field.[19][20] The fringing field at the corners of the electrolyte droplet tends to pull the droplet down onto the electrode, lowering the macroscopic contact angle and increasing the droplet contact area. Alternatively, electrowetting can be viewed from a thermodynamic perspective. Since the surface tension of an interface is defined as the Helmholtz free energy required to create a certain area of that surface, it contains both chemical and electrical components, and charge becomes a significant term in that equation. The chemical component is just the natural surface tension of the solid/electrolyte interface with no electric field. The electrical component is the energy stored in the capacitor formed between the conductor and the electrolyte.

The simplest derivation of electrowetting behavior is given by considering its thermodynamic model. While it is possible to obtain a detailed numerical model of electrowetting by considering the precise shape of the electrical fringing field and how it affects the local droplet curvature, such solutions are mathematically and computationally complex. The thermodynamic derivation proceeds as follows. Defining the relevant surface tensions as:

– The total, electrical and chemical, surface tension between the electrolyte and the conductor
– The surface tension between the electrolyte and the conductor at zero electric field
– The surface tension between the conductor and the external ambient
– The surface tension between the electrolyte and the external ambient
– The macroscopic contact angle between the electrolyte and the dielectric
– The capacitance per area of the interface, єrє0/t, for a uniform dielectric of thickness t and permittivity єr
– The effective applied voltage, integral of the electric field from the electrolyte to the conductor

Relating the total surface tension to its chemical and electrical components gives:

The contact angle is given by the Young-Dupre equation, with the only complication being that the total surface energy is used:

Combining the two equations gives the dependence of θ on the effective applied voltage as:

An additional complication is that liquids also exhibit a saturation phenomenon: after certain voltage, the saturation voltage, the further increase of voltage will not change the contact angle, and with extreme voltages the interface will only show instabilities.

However, surface charge is but one component of surface energy, and other components are certainly perturbed by induced charge. So, a complete explanation of electrowetting is unquantified, but it should not be surprising that these limits exist.

It was recently shown by Klarman et al.[21] that contact angle saturation can be explained as a universal effect- regardless of materials used – if electrowetting is observed as a global phenomenon affected by the detailed geometry of the system. Within this framework it is predicted that reversed electrowetting is also possible (contact angle grows with the voltage).

It has also been experimentally shown by Chevaloitt[22] that contact angle saturation is invariant to all materials parameters, thus revealing that when good materials are utilized, most saturation theories are invalid. This same paper further suggests that electrohydrodynamic instability may be the source of saturation, a theory that is unproven but being suggested by several other groups as well.

Reverse electrowetting

Reverse electrowetting[23] can be used to harvest energy via a mechanical-to-electrical engineering scheme.

Electrowetting on liquid-infused film (EWOLF)

Another electrowetting configuration is electrowetting on liquid-infused film. The liquid-infused film is achieved by locking a liquid lubricant in a porous membrane through the delicate control of wetting properties of the liquid and solid phases. Taking advantage of the negligible contact line pinning at the liquid-liquid interface, the droplet response in EWOLF can be electrically addressed with enhanced degree of switchability and reversibility compared to the conventional EWOD. Moreover, the infiltration of liquid lubricant phase in the porous membrane also efficiently enhances the viscous energy dissipation, suppressing the droplet oscillation and leading to fast response without sacrificing the desired electrowetting reversibility. Meanwhile, the damping effect associated with the EWOLF can be tailored by manipulating the viscosity and thickness of liquid lubricant.[24]

Opto- and photoelectrowetting

Optoelectrowetting,[25][26] and photoelectrowetting[27] are both optically-induced electrowetting effects. Optoelectrowetting involves the use of a photoconductor whereas photoelectrowetting use a photocapacitance and can be observed if the conductor in the liquid/insulator/conductor stack used for electrowetting is replaced by a semiconductor. By optically modulating the number of carriers in the space-charge region of the semiconductor, the contact angle of a liquid droplet can be altered in a continuous way. This effect can be explained by a modification of the Young-Lippmann equation.

Materials

For reasons that are still under investigation, only a limited set of surfaces exhibit the theoretically predicted electrowetting behavior. Because of this, alternative materials that can be used to coat and functionalize the surface are used to create the expected wetting behavior. For example, amorphous fluoropolymers are widely used electrowetting coating materials, and it has been found that the behavior of these fluoropolymers can be enhanced by the appropriate surface patterning. These fluoropolymers coat the necessary conductive electrode, typically made of aluminum foil or indium tin oxide (ITO), to create the desired electrowetting properties.[28] Three types of such polymers are commercially available: FluoroPel hydrophobic and superhydrophobic V-series polymers are sold by Cytonix, CYTOP is sold by Asahi Glass Co., and Teflon AF is sold by DuPont. Other surface materials such as SiO2 and gold on glass have been used.[29][30] These materials allow the surfaces themselves to act as the ground electrodes for the electric current.[30]

Applications

Electrowetting is now used in a wide range of applications,[31] from modular to adjustable lenses, electronic displays (e-paper), electronic outdoor displays, and switches for optical fibers. Electrowetting has recently been evoked for manipulating soft matter particularly, suppressing coffee ring effect.[32] Furthermore, filters with electrowetting functionality has been suggested for cleaning oil spills and separating oil-water mixtures.[33]

International meeting

An international meeting for electrowetting is held every two years. The most recent meeting was held on June 18 to 20, 2018, at the University of Twente, the Netherlands.[34]

The previous hosts of the electrowetting meeting are: Mons (1999), Eindhoven (2000), Grenoble (2002), Blaubeuren (2004), Rochester (2006), Los Angeles (2008), Pohang (2010), Athens (2012), Cincinnati (2014), Taipei (2016).

See also

References

  1. ^ Gabriel Lippmann, "Relation entre les phénomènes électriques et capillaires." Ann. Chim. Phys, 5:494, 1875
  2. ^ A. Frumkin, Об явлениях смачивания и прилипания пузырьков, I (On the phenomena of wetting and adhesion of the bubbles, I). Zhurnal Fizicheskoi Khimii (J Phys Chem USSR), 12: 337-345 (1938).
  3. ^ Beni, G.; Hackwood, S. (1981-02-15). "Electro-wetting displays". Applied Physics Letters. 38 (4). AIP Publishing: 207–209. Bibcode:1981ApPhL..38..207B. doi:10.1063/1.92322. ISSN 0003-6951.
  4. ^ [1][permanent dead link]
  5. ^ US patent 6143496, Brown, et al., "Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly", issued November 7, 2000 
  6. ^ B. Berge, "Électrocapillarité et mouillage de films isolants par l'eau", C. R. Acad. Sci. Paris, t. 317, Série II, p. 157-163, 1993.
  7. ^ a b J. Lee, "Microactuation by Continuous Electrowetting and Electrowetting: Theory, Fabrication, and Demonstration," PhD Thesis, University of California, Los Angeles, 2000
  8. ^ S. Arscott “Electrowetting and semiconductors” RSC Advances 4, 29223 (2014). doi:10.1039/C4RA04187A.
  9. ^ C. Palma and R. Deegan “Electrowetting on semiconductors” Appl. Phys. Lett. 106, 014106 (2015). doi:10.1063/1.4905348.
  10. ^ S. Arscott and M. Gaudet "Electrowetting at a liquid metal–semiconductor junction" Appl. Phys. Lett. 103, 074104 (2013). doi:10.1063/1.4818715.
  11. ^ J. Lee and C.-J. Kim, "Liquid Micromotor Driven by Continuous Electrowetting", Proc. IEEE Micro Electro Mechanical Systems Workshop, Heidelberg, Germany, Jan. 1998, pp. 538–543
  12. ^ Pollack, Michael G.; Fair, Richard B.; Shenderov, Alexander D. (2000-09-11). "Electrowetting-based actuation of liquid droplets for microfluidic applications". Applied Physics Letters. 77 (11). AIP Publishing: 1725–1726. Bibcode:2000ApPhL..77.1725P. doi:10.1063/1.1308534. ISSN 0003-6951.
  13. ^ S.-K. Fan, P.-P. de Guzman, and C.-J. Kim, "EWOD Driving of Droplet on NxM Grid Using Single-Layer Electrode Patterns, Tech. Dig., Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head Island, SC, June 2002, pp. 134–137
  14. ^ J. Gong and C.-J. Kim, "Two-Dimensional Digital Microfluidic System by Multi-Layer Printed Circuit Board", Proc. IEEE Conf. MEMS, Orlando, FL, Jan. 2005, pp. 726–729
  15. ^ C.-J. Kim, "Integrated Digital Microfluidic Circuits Operated by Electrowetting-on-Dielectrics (EWOD) Principle", granted in 2000 by Defense Advanced Research Projects Agency (DARPA), award number N66001-0130-3664
  16. ^ C.-J. Kim, "Micropumping by Electrowetting", Proceedings of the ASME International Mechanical Engineering Congress and Exposition, November 2001, New York, NY, IMECE2001/HTD-24200.
  17. ^ M. G. Pollack, Electrowetting-Based Microactuation Of Droplets For Digital Microfluidics, PhD Thesis, Duke University, 2001.
  18. ^ Cho, S. K.; Moon, H.; Kim, C.-J. (2003). "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits". Journal of Microelectromechanical Systems. 12 (1). Institute of Electrical and Electronics Engineers (IEEE): 70–80. doi:10.1109/jmems.2002.807467. ISSN 1057-7157.
  19. ^ Chang, H. C.; Yeo, L. (2009). Electrokinetically Driven Microfluidics and Nanofluidics. Cambridge University Press.
  20. ^ Kirby, B. J. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press. ISBN 978-0-521-11903-0. Archived from the original on 2019-04-28. Retrieved 2011-01-08.
  21. ^ Klarman, Dan; Andelman, David; Urbakh, Michael (2011-05-17). "A Model of Electrowetting, Reversed Electrowetting, and Contact Angle Saturation". Langmuir. 27 (10): 6031–6041. arXiv:1102.0791. Bibcode:2011arXiv1102.0791K. doi:10.1021/la2004326. ISSN 0743-7463. PMID 21510663. S2CID 18448044.
  22. ^ Chevalliot, Stéphanie; Kuiper, Stein; Heikenfeld, Jason (2012). "Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation" (PDF). Journal of Adhesion Science and Technology. 26 (12–17). Brill: 1–22. doi:10.1163/156856111x599580. ISSN 0169-4243. S2CID 1760297. Archived from the original (PDF) on 2012-07-14.
  23. ^ Krupenkin, Tom; Taylor, J. Ashley (2011-08-23). "Reverse electrowetting as a new approach to high-power energy harvesting". Nature Communications. 2 (1). Springer Science and Business Media LLC: 448. Bibcode:2011NatCo...2..448K. doi:10.1038/ncomms1454. ISSN 2041-1723. PMC 3265368. PMID 21863015.
  24. ^ Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai (2014-10-30). "Electrowetting on liquid-infused film (EWOLF): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging". Scientific Reports. 4 (1). Springer Science and Business Media LLC: 6846. arXiv:1409.6989. Bibcode:2014NatSR...4E6846H. doi:10.1038/srep06846. ISSN 2045-2322. PMC 4213809. PMID 25355005.
  25. ^ Chiou, Pei Yu; Moon, Hyejin; Toshiyoshi, Hiroshi; Kim, Chang-Jin; Wu, Ming C. (2003). "Light actuation of liquid by optoelectrowetting". Sensors and Actuators A: Physical. 104 (3). Elsevier BV: 222–228. doi:10.1016/s0924-4247(03)00024-4. ISSN 0924-4247.
  26. ^ Park, Sung-Yong; Teitell, Michael A.; Chiou, Eric P. Y. (2010). "Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns". Lab on a Chip. 10 (13). Royal Society of Chemistry (RSC): 1655–61. doi:10.1039/c001324b. ISSN 1473-0197. PMID 20448870.
  27. ^ Arscott, Steve (2011). "Moving liquids with light: Photoelectrowetting on semiconductors". Scientific Reports. 1 (1): 184. arXiv:1108.4935. Bibcode:2011NatSR...1E.184A. doi:10.1038/srep00184. ISSN 2045-2322. PMC 3240946. PMID 22355699.
  28. ^ Yang, Chun-Guang; Xu, Zhang-Run; Wang, Jian-Hua (February 2010). "Manipulation of droplets in microfluidic systems". TrAC Trends in Analytical Chemistry. 29 (2): 141–157. doi:10.1016/j.trac.2009.11.002.
  29. ^ Brabcova, Zuzana; McHale, Glen; Wells, Gary G.; Brown, Carl V.; Newton, Michael I. (20 March 2017). "Electric field induced reversible spreading of droplets into films on lubricant impregnated surfaces". Applied Physics Letters. 110 (12): 121603. Bibcode:2017ApPhL.110l1603B. doi:10.1063/1.4978859.
  30. ^ a b Lu, Yi; Sur, Aritra; Pascente, Carmen; Ravi Annapragada, S.; Ruchhoeft, Paul; Liu, Dong (March 2017). "Dynamics of droplet motion induced by Electrowetting". International Journal of Heat and Mass Transfer. 106: 920–931. doi:10.1016/j.ijheatmasstransfer.2016.10.040.
  31. ^ "Varioptic - the Liquid Lens Company | Liquid Lens Technology". Archived from the original on 2011-03-05.
  32. ^ H.Burak Eral, D.Mampallil, M. H. G. Duits, F. Mugele "Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting", Soft Matter, 2011, 7, 4954–4958, doi:10.1039/C1SM05183K
  33. ^ H. Burak Eral, R. Ruiter, J. Ruiter, J. M. Oh, C. Semprebon, M. Brinkmann, F. Mugele, "Reversible morphological transitions of a drop on a fiber", Soft Matter, 2011, 7 (11), 5138 – 5143, doi:10.1039/C0SM01403F
  34. ^ International Electrowetting Conference 2018

Read other articles:

У этого термина существуют и другие значения, см. Южный вокзал. «Южный вокзал»Південний вокзалХолодногорско-Заводская линияХарьковский метрополитен Район Холодногорский Расположение пересечение Привокзальной площади и улицы Евгения Котляра Дата открытия 23 августа 19...

 

35.ª edición de los Premios Óscar Santa Monica Civic Auditorium, donde se celebró la entrega.Premio a La excelencia en logros cinematográficosOtorgado por Academia de las Artes y las Ciencias Cinematográficas (AMPAS)Fecha 8 de abril de 1963Ubicación Santa Monica Civic AuditoriumEstados UnidosAnfitrión Frank Sinatra Cronología 34.ª edición 35.ª edición de los Premios Óscar 36.ª edición Sitio web oficial[editar datos en Wikidata] La 35.ª edición de los Óscar premió...

 

Pesta Olahraga Solidaritas Islam ألعاب التضامن الإسلاميSingkatanISGAcara pertamaPesta Olahraga Solidaritas Islam 2005 di Mekkah, Arab SaudiTerjadi setiapEmpat tahunAcara terakhirPesta Olahraga Solidaritas Islam 2021 di Konya, TurkiTujuanAjang serangkaian jenis olahraga untuk negara Organisasi Kerja Sama IslamMarkas besarRiyadh, Arab SaudiOrganisasiFederasi Olahraga Solidaritas IslamSitushttp://issf.sa/en/ Pesta Olahraga Solidaritas Islam atau (bahasa Arab: دورة ألع�...

Вороняче 47°59′35″ пн. ш. 6°54′21″ сх. д. / 47.99305555558377279° пн. ш. 6.9058333333610777° сх. д. / 47.99305555558377279; 6.9058333333610777Координати: 47°59′35″ пн. ш. 6°54′21″ сх. д. / 47.99305555558377279° пн. ш. 6.9058333333610777° сх. д. / 47.99305555558377279; 6.9058333333610777Розташува

 

Neuhaus-Schierschnitz Gemeinde Föritztal Wappen von Neuhaus-Schierschnitz Koordinaten: 50° 19′ N, 11° 15′ O50.31666666666711.25350Koordinaten: 50° 19′ 0″ N, 11° 15′ 0″ O Höhe: 350 m Fläche: 23,2 km² Einwohner: 3103 (31. Dez. 2016) Bevölkerungsdichte: 134 Einwohner/km² Eingemeindung: 6. Juli 2018 Postleitzahl: 96524 Vorwahl: 036764 Neuhaus-Schierschnitz (Thüringen) Lage von Neuhaus-Schierschnitz i...

 

De bestuurlijke indeling van Andorra Parochie (in het Catalaans parròquia, meervoud parròquies) is een bestuurslaag van Andorra. Andorra is in zeven parochies ingedeeld. Tussen haakjes staat het aantal inwoners en het bijhorende jaartal. Andorra la Vella (hoofdstad; 24.678 inw., 2008) Canillo (3685 inw., 2007) Encamp (14.029 inw., 2007) Escaldes-Engordany (14.521 inw., 2016) La Massana (9357 inw., 2007) Ordino (3685 inw., 2007) Sant Julià de Lòria (9595 inw., 2007) Elke parochie bestaat u...

Д'єдеррік Джоел Таге Особисті дані Народження 6 грудня 1993(1993-12-06) (29 років)   Нконгсамба, Камерун Зріст 178 см Вага 78 кг Громадянство  Камерун Позиція нападник Інформація про клуб Поточний клуб «Марітіму» Юнацькі клуби 2009-20112012 «Іраті» «Лондрина» Професіональні �...

 

فلاديمير بيارا   معلومات شخصية الميلاد 26 أغسطس 1928(1928-08-26) الوفاة 11 أغسطس 2014 (عن عمر ناهز 85 عاماً)سبليت  سبب الوفاة مضاعفة  الطول 1.84 م (6 قدم 1⁄2 بوصة) مركز اللعب حارس مرمى الجنسية كرواتيا جمهورية يوغوسلافيا الاشتراكية الاتحادية  المسيرة الاحترافية1 سنوات...

 

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Yukngaji – berita 

Small, rural settlement This article is about the term for a small rural settlement. For other uses, see Ranchería (disambiguation). A Wayuu rancheria, located in the Guajira Peninsula, Colombia The Spanish word ranchería, or rancherío, refers to a small, rural settlement. In the Americas the term was applied to native villages or bunkhouses.[1][2] Anglo-Americans adopted the term with both these meanings, usually to designate the residential area of a rancho in the America...

 

Tour d'Espagne 2008 GénéralitésCourse63e Tour d'EspagneÉtapes21Dates30 août – 21 septembre 2008Distance3 169 kmPays Espagne AndorreLieu de départGrenadeLieu d'arrivéeMadridÉquipes19Partants171Arrivants131Vitesse moyenne38,84 km/hRésultatsVainqueur Alberto Contador (Astana)Deuxième Levi Leipheimer (Astana)Troisième Carlos Sastre (CSC Saxo Bank)Classement par points Greg Van Avermaet (Silence-Lotto)Meilleur grimpeur David Moncoutié (Cofidis-Le Crédit par Téléphone)Meilleur...

 

本田親男(1953年撮影) 本田 親男(ほんだ ちかお、1899年11月21日 - 1980年7月30日)は、鹿児島県出身のジャーナリスト。元毎日新聞社社長、会長、最高顧問。 来歴 本田の祖先は、武蔵国本田郷の領主・本田左衛門尉貞親で、島津忠久夫人の父。 幼少時代 1899年11月21日、鹿児島市下荒田町生まれ。鹿児島師範学校附属幼稚園を経て、1906年に鹿児島市立八幡小学校へ入学。...

1994 American filmA Low Down Dirty ShameTheatrical release posterDirected byKeenen Ivory WayansWritten byKeenen Ivory WayansProduced by Eric L. Gold Joe Roth Lee R. Mayes Michael Waxman Roger Birnbaum Starring Keenen Ivory Wayans Charles S. Dutton Jada Pinkett Salli Richardson Andrew Divoff CinematographyMatthew F. LeonettiEdited byJohn F. LinkMusic byMarcus MillerProductioncompanies Hollywood Pictures Caravan Pictures Distributed byBuena Vista Pictures DistributionRelease date November ...

 

Daihatsu Gran MaxDaihatsu Gran Max 1.3 D van 2015 (S401RV; pra-facelift, Indonesia)InformasiProdusenAstra DaihatsuJuga disebutToyota TownAce/LiteAce (Jepang)Mazda Bongo (Jepang)[1]Masa produksi2007-sekarangPerakitanSunter, DKI JakartaBodi & rangkaKelasMinibus, PikapBentuk kerangkaVan, PikapTata letakMesin tengah, penggerak roda belakangMobil terkaitDaihatsu LuxioPenyalur dayaMesin1298 cc K3-DE I4 bensin1495 cc 3SZ-VE I4 bensin1496 cc 2NR-VE I4 bensinKronologiPendahuluDai...

 

2012 German filmRussian DiscoDirected byOliver ZiegenbalgStarringMatthias Schweighöfer Friedrich MückeRelease date 29 March 2012 (2012-03-29) Running time1h 40minCountryGermanyLanguageGerman Russian Disco (German: Russendisko) is a 2012 German comedy film based on the eponymous novel by Wladimir Kaminer.[1] Cast Matthias Schweighöfer - Wladimir Kaminer Friedrich Mücke - Mischa Christian Friedel - Andrej Peri Baumeister - Olga Susanne Bormann [de] - Hann...

Flag of BelgradeAdopted1931Designed byĐorđe Andrejević-Kun The Flag of Belgrade is composed of three Serbian national colours: red, blue and white. The blue symbolises hope and faith in better future. The red of the ground is a symbol of the suffering of Serbian people in a struggle for freedom. Two horizontal white lines represent the Sava and Danube rivers, which are symbols of the strength of Belgrade. They are white according to heraldry rules. Beograd is Serbian name for White Ci...

 

Luma PicturesTypePrivateIndustryVisual effects, CGI animationFounded2002FounderPayam Shohadai, Jonathan R. BetuelHeadquartersSanta Monica, California, USAMelbourne, Victoria, AustraliaKey peopleGrady Gamble, Vincent Cirelli, Jamy Zink, Shauna BryanWebsitehttps://www.luma.inc/ Luma Pictures is a visual effects studio with facilities in Santa Monica, California and Melbourne, Victoria. Founded in 2002 by Payam Shohadai and Jonathan R. Beutel, the company is best known for their creatures, envir...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shibin El Kom – news · newspapers · books · scholar · JSTOR (December 2013) (Learn how and when to remove this template message) 30°33′31″N 31°0′36″E / 30.55861°N 31.01000°E / 30.55861; 31.01000 City in Monufia, EgyptShibin E...

13th President of Pakistan since 2018 (born 1949) His ExcellencyArif Alviعارف علویOfficial portrait, 201813th President of PakistanIncumbentAssumed office 9 September 2018Prime MinisterImran KhanShehbaz SharifAnwaar ul Haq Kakar (Caretaker)Preceded byMamnoon HussainMember of the National Assembly of PakistanIn office13 August 2018 – 6 September 2018Preceded byHimselfSucceeded byAftab SiddiquiConstituencyNA-247 (Karachi South-II)In office1 June 2013 – 31 May 2...

 

PangeaPangea selama era Mesozoikum sekitar 250 juta tahun lalu.Sejarah benuaTerbentuk300 - 250 juta tahun laluJenisSuperbenuaHari ini bagian dari Asia Eropa Afrika Amerika Utara Amerika Selatan Australia Antarktika serta pulau pulau di sekitar benua. Benua lebih kecil Laurentia Baltica Kazakhstania Siberia China Utara China Selatan China Timur Kongo (benua) India (benua) Arab (benua) Kraton Amazonia Kraton Afrika Barat Kraton Tanzania Kalaharia (benua) Kraton São Francisco Kraton Rio Apa Kra...

 
Kembali kehalaman sebelumnya