where exp0(κ) = κ and inductively expr+1(κ)=2expr(κ). This is sharp in the sense that expr(κ)+ cannot be replaced by expr(κ) on the left hand side.
The above partition symbol describes the following statement. If f is a coloring of the r+1-element subsets of a set of cardinality expr(κ)+, in κ many colors, then there is a homogeneous set of cardinality κ+ (a set, all whose r+1-element subsets get the same f-value).
Erdős, Paul; Hajnal, András; Máté, Attila; Rado, Richard (1984), Combinatorial set theory: partition relations for cardinals, Studies in Logic and the Foundations of Mathematics, vol. 106, Amsterdam: North-Holland Publishing Co., ISBN0-444-86157-2, MR0795592