Share to: share facebook share twitter share wa share telegram print page

Highly composite number

Demonstration, with Cuisenaire rods, of the first four highly composite numbers: 1, 2, 4, 6

A highly composite number is a positive integer that has more divisors than all smaller positive integers. A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are.

Ramanujan wrote a paper on highly composite numbers in 1915.[1]

The mathematician Jean-Pierre Kahane suggested that Plato must have known about highly composite numbers as he deliberately chose such a number, 5040 (= 7!), as the ideal number of citizens in a city.[2] Furthermore, Vardoulakis and Pugh's paper delves into a similar inquiry concerning the number 5040.[3]

Examples

The first 41 highly composite numbers are listed in the table below (sequence A002182 in the OEIS). The number of divisors is given in the column labeled d(n). Asterisks indicate superior highly composite numbers.

Order HCN
n
prime
factorization
prime
exponents
number
of prime
factors
d(n) primorial
factorization
1 1 0 1
2 2* 1 1 2
3 4 2 2 3
4 6* 1,1 2 4
5 12* 2,1 3 6
6 24 3,1 4 8
7 36 2,2 4 9
8 48 4,1 5 10
9 60* 2,1,1 4 12
10 120* 3,1,1 5 16
11 180 2,2,1 5 18
12 240 4,1,1 6 20
13 360* 3,2,1 6 24
14 720 4,2,1 7 30
15 840 3,1,1,1 6 32
16 1260 2,2,1,1 6 36
17 1680 4,1,1,1 7 40
18 2520* 3,2,1,1 7 48
19 5040* 4,2,1,1 8 60
20 7560 3,3,1,1 8 64
21 10080 5,2,1,1 9 72
22 15120 4,3,1,1 9 80
23 20160 6,2,1,1 10 84
24 25200 4,2,2,1 9 90
25 27720 3,2,1,1,1 8 96
26 45360 4,4,1,1 10 100
27 50400 5,2,2,1 10 108
28 55440* 4,2,1,1,1 9 120
29 83160 3,3,1,1,1 9 128
30 110880 5,2,1,1,1 10 144
31 166320 4,3,1,1,1 10 160
32 221760 6,2,1,1,1 11 168
33 277200 4,2,2,1,1 10 180
34 332640 5,3,1,1,1 11 192
35 498960 4,4,1,1,1 11 200
36 554400 5,2,2,1,1 11 216
37 665280 6,3,1,1,1 12 224
38 720720* 4,2,1,1,1,1 10 240
39 1081080 3,3,1,1,1,1 10 256
40 1441440* 5,2,1,1,1,1 11 288
41 2162160 4,3,1,1,1,1 11 320

The divisors of the first 19 highly composite numbers are shown below.

n d(n) Divisors of n
1 1 1
2 2 1, 2
4 3 1, 2, 4
6 4 1, 2, 3, 6
12 6 1, 2, 3, 4, 6, 12
24 8 1, 2, 3, 4, 6, 8, 12, 24
36 9 1, 2, 3, 4, 6, 9, 12, 18, 36
48 10 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
60 12 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
120 16 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120
180 18 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180
240 20 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240
360 24 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360
720 30 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720
840 32 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840
1260 36 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 28, 30, 35, 36, 42, 45, 60, 63, 70, 84, 90, 105, 126, 140, 180, 210, 252, 315, 420, 630, 1260
1680 40 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 35, 40, 42, 48, 56, 60, 70, 80, 84, 105, 112, 120, 140, 168, 210, 240, 280, 336, 420, 560, 840, 1680
2520 48 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 56, 60, 63, 70, 72, 84, 90, 105, 120, 126, 140, 168, 180, 210, 252, 280, 315, 360, 420, 504, 630, 840, 1260, 2520
5040 60 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, 5040

The table below shows all 72 divisors of 10080 by writing it as a product of two numbers in 36 different ways.

The highly composite number: 10080
10080 = (2 × 2 × 2 × 2 × 2)  ×  (3 × 3)  ×  5  ×  7
1
×
10080
2
×
5040
3
×
3360
4
×
2520
5
×
2016
6
×
1680
7
×
1440
8
×
1260
9
×
1120
10
×
1008
12
×
840
14
×
720
15
×
672
16
×
630
18
×
560
20
×
504
21
×
480
24
×
420
28
×
360
30
×
336
32
×
315
35
×
288
36
×
280
40
×
252
42
×
240
45
×
224
48
×
210
56
×
180
60
×
168
63
×
160
70
×
144
72
×
140
80
×
126
84
×
120
90
×
112
96
×
105
Note:  Numbers in bold are themselves highly composite numbers.
Only the twentieth highly composite number 7560 (= 3 × 2520) is absent.
10080 is a so-called 7-smooth number (sequence A002473 in the OEIS).

The 15,000th highly composite number can be found on Achim Flammenkamp's website. It is the product of 230 primes:

where is the th successive prime number, and all omitted terms (a22 to a228) are factors with exponent equal to one (i.e. the number is ). More concisely, it is the product of seven distinct primorials:

where is the primorial .[4]

Prime factorization

Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are labelled in bold and superior highly composite numbers are starred. In the SVG file, hover over a bar to see its statistics.

Roughly speaking, for a number to be highly composite it has to have prime factors as small as possible, but not too many of the same. By the fundamental theorem of arithmetic, every positive integer n has a unique prime factorization:

where are prime, and the exponents are positive integers.

Any factor of n must have the same or lesser multiplicity in each prime:

So the number of divisors of n is:

Hence, for a highly composite number n,

  • the k given prime numbers pi must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
  • the sequence of exponents must be non-increasing, that is ; otherwise, by exchanging two exponents we would again get a smaller number than n with the same number of divisors (for instance 18 = 21 × 32 may be replaced with 12 = 22 × 31; both have six divisors).

Also, except in two special cases n = 4 and n = 36, the last exponent ck must equal 1. It means that 1, 4, and 36 are the only square highly composite numbers. Saying that the sequence of exponents is non-increasing is equivalent to saying that a highly composite number is a product of primorials or, alternatively, the smallest number for its prime signature.

Note that although the above described conditions are necessary, they are not sufficient for a number to be highly composite. For example, 96 = 25 × 3 satisfies the above conditions and has 12 divisors but is not highly composite since there is a smaller number (60) which has the same number of divisors.

Asymptotic growth and density

If Q(x) denotes the number of highly composite numbers less than or equal to x, then there are two constants a and b, both greater than 1, such that

The first part of the inequality was proved by Paul Erdős in 1944 and the second part by Jean-Louis Nicolas in 1988. We have

and

[5]
Euler diagram of numbers under 100:
   Superabundant and highly composite
   Weird
   Perfect

Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is 245,044,800; it has a digit sum of 27, which does not divide evenly into 245,044,800.

10 of the first 38 highly composite numbers are superior highly composite numbers. The sequence of highly composite numbers (sequence A002182 in the OEIS) is a subset of the sequence of smallest numbers k with exactly n divisors (sequence A005179 in the OEIS).

Highly composite numbers whose number of divisors is also a highly composite number are

1, 2, 6, 12, 60, 360, 1260, 2520, 5040, 55440, 277200, 720720, 3603600, 61261200, 2205403200, 293318625600, 6746328388800, 195643523275200 (sequence A189394 in the OEIS).

It is extremely likely that this sequence is complete.

A positive integer n is a largely composite number if d(n) ≥ d(m) for all mn. The counting function QL(x) of largely composite numbers satisfies

for positive c and d with .[6][7]

Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number.[8] Due to their ease of use in calculations involving fractions, many of these numbers are used in traditional systems of measurement and engineering designs.

See also

Notes

  1. ^ Ramanujan, S. (1915). "Highly composite numbers" (PDF). Proc. London Math. Soc. Series 2. 14: 347–409. doi:10.1112/plms/s2_14.1.347. JFM 45.1248.01.
  2. ^ Kahane, Jean-Pierre (February 2015), "Bernoulli convolutions and self-similar measures after Erdős: A personal hors d'oeuvre", Notices of the American Mathematical Society, 62 (2): 136–140. Kahane cites Plato's Laws, 771c.
  3. ^ Vardoulakis, Antonis; Pugh, Clive (September 2008), "Plato's hidden theorem on the distribution of primes", The Mathematical Intelligencer, 30 (3): 61–63, doi:10.1007/BF02985381.
  4. ^ Flammenkamp, Achim, Highly Composite Numbers.
  5. ^ Sándor et al. (2006) p. 45
  6. ^ Sándor et al. (2006) p. 46
  7. ^ Nicolas, Jean-Louis (1979). "Répartition des nombres largement composés". Acta Arith. (in French). 34 (4): 379–390. doi:10.4064/aa-34-4-379-390. Zbl 0368.10032.
  8. ^ Srinivasan, A. K. (1948), "Practical numbers" (PDF), Current Science, 17: 179–180, MR 0027799.

References

Read other articles:

2006 aviation accident Air Algérie Flight 22087T-VHG, the aircraft involved in the accidentAccidentDate13 August 2006 (2006-08-13)SummaryInstrument failure leading to a loss of control[1]SitePiacenza, ItalyAircraftAircraft typeLockheed L-100-30 HerculesOperatorAir AlgérieICAO flight No.DAH2208Call signAIR ALGERIE 2208Registration7T-VHGFlight originHouari Boumediene AirportDestinationFrankfurt AirportOccupants3Crew3Fatalities3Survivors0 Air Algérie Flight 2208 wa...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الاعتراف الأخيرمعلومات عامةالصنف الفني فيلم رعب تاريخ الصدور 1978اللغة الأصلية العربيةالبلد  مصرالطاقم

 

Takuro Fujii Takuro Fujii Natação Nascimento 21 de abril de 1985 (38 anos)Kawachinagano, Osaka Nacionalidade japonês(esa) Medalhas Jogos Olímpicos Prata Londres 2012 4×100 m medley Bronze Pequim 2008 4×100 m medley Campeonatos Mundiais Bronze Barcelona 2013 4×100 m medley Campeonato Pan-Pacífico Prata Irvine 2010 4×100 m medley Bronze Irvine 2010 100 m borboleta Jogos Asiáticos Bronze Cantão 2010 100 m livre Takuro Fujii (Kawachinagano, 21 de abril de 1985) é um nadador ...

截至2023年12月,香港共有258個公共屋邨,單位總計超過85萬個。此列表以地區劃分,排名不分先後(「一邨」、「二邨」等有細分的屋邨視作不同屋邨,以及由原址分拆而成的,表中放在一起方便比較)。 所謂公共屋邨,就是指由政府、志願團體或私營企業興建,再以低廉價格出租予低收入市民的住宅。現時香港提供公共屋邨的機構有三間,分別為香港房屋委員會(房委會)

 

Jalan Tol Lingkar Luar BogorBogor Outer Ring RoadBORRInformasi ruteDikelola oleh PT Marga Sarana Jabar (MSJ)Panjang:11 km (7 mi)Berdiri:23 November 2009; 14 tahun lalu (2009-11-23) – sekarangSejarah:Dibangun tahun 2005-sekarangPersimpangan besarUjung Barat:Salabenda, BogorJalan Tol Depok-AntasariJalan Tol Bogor-Serpong via ParungJalan Tol Salabenda-Dramaga-Caringin/Bocimi (rencana)Ujung Timur:Sentul Selatan, Bogor Jalan Tol JagorawiJalan Tol Sentul Selatan-Karawang Barat ...

 

 Nota: Para outras cidades com este nome, veja San Martino. Coordenadas: 45° 9' N 9° 8' E San Martino Siccomario    Comuna   Localização San Martino SiccomarioLocalização de San Martino Siccomario na Itália Coordenadas 45° 9' N 9° 8' E Região Lombardia Província Pavia Características geográficas Área total 14 km² População total 5 040 hab. Densidade 360 hab./km² Altitude 63 m Outros dados Comunas limítrofes Carbon...

БатерноBaterno Flag of {{{official_name}}}ПрапорМуніципалітетКраїна  ІспаніяАвтономна спільнота ЕстремадураПровінція БадахосКоординати 38°57′ пн. ш. 4°54′ зх. д. / 38.95° пн. ш. 4.9° зх. д. / 38.95; -4.9Координати: 38°57′ пн. ш. 4°54′ зх. д. / 38.95° ...

 

Johannes Steen Primer ministro de Noruega 6 de marzo de 1891-2 de mayo de 1893Monarca Oscar IIPredecesor Emil Stang, Sr.Sucesor Emil Stang, Sr. 17 de febrero de 1898-21 de abril de 1902Monarca Oscar IIPredecesor Francis HagerupSucesor Otto Blehr Información personalNacimiento 22 de julio de 1827 Christiania (Unión entre Suecia y Noruega) Fallecimiento 1 de abril de 1906 (78 años)Voss (Noruega) Sepultura Cementerio de Nuestro Salvador de Oslo Nacionalidad NoruegaFamiliaPadre John Svaboe Ste...

 

この記事の主題はウィキペディアにおける人物の特筆性の基準を満たしていないおそれがあります。基準に適合することを証明するために、記事の主題についての信頼できる二次資料を求めています。なお、適合することが証明できない場合には、記事は統合されるか、リダイレクトに置き換えられるか、さもなくば削除される可能性があります。出典検索?: 糸原美...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2020) ماري ميكر   معلومات شخصية الميلاد سبتمبر 1959 (64 سنة)  بورتلاند  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة ديباو (التخصص:علم النفس) (ا

 

エイブラハム・リンカーン 基本情報建造所 ニューポート・ニューズ造船所運用者  アメリカ海軍艦種 航空母艦(原子力空母)級名 ニミッツ級航空母艦愛称 Abeモットー Shall not Perish母港 ノースアイランド海軍航空基地艦歴発注 1982年12月27日起工 1984年11月3日進水 1988年2月13日就役 1989年11月11日要目満載排水量 104,263 t全長 333 m最大幅 76.8 m吃水 11.3 m主機 蒸気タービン 4基

 

Facilities in rural U.S. communities Small-town opera houses exist in rural communities throughout the United States. Unlike metropolitan opera houses in the United States and other areas of the world, small-town opera houses in the U.S. were constructed to operate as theatrical, versus operatic, performance venues. The name opera house was generally applied to the buildings to differentiate them from less reputable facilities. History From the 1850s to 1920s, opera houses were constructed in...

Pour les articles homonymes, voir Edurne. Edurne Edurne en 2015Informations générales Surnom Edurne Nom de naissance Edurne García Almagro Naissance 22 décembre 1985 (37 ans)Madrid, Espagne Activité principale Chanteuse Genre musical Pop Années actives Depuis 2006 modifier Edurne García Almagro, dite Edurne, est une chanteuse espagnole, née à Madrid le 22 décembre 1985. Biographie À 13 ans, Edurne est choisie pour faire partie du groupe Trastos avec lequel elle enregistre 3 di...

 

Bahasa BunakDituturkan di  Indonesia  Timor Leste Wilayah  Nusa Tenggara Timur Penutur50.000 di Indonesia dan 50.000 di Timor Timur (Voegelin dan Voegelin, 1977)Rumpun bahasaTrans-Nugini Trans-Nugini BaratTimor Barat-Alor-PantarBunakBahasa Bunak Kode bahasaISO 639-1-ISO 639-2-ISO 639-3bfn  Portal BahasaSunting kotak info • L • B • PWBantuan penggunaan templat ini PemberitahuanTemplat ini mendeteksi bahwa artikel bahasa ini masih belum dinilai kual...

 

エジプト軍 総人員徴兵制度 徴兵期間:1~3年間適用年齢:18~49歳適齢総数:18,347,560人(2005年)実務総数:15,540,234人(2005年)財政予算 25億ドル(2006年)+13億ドル(米国軍事支援)軍費/GDP 3.1%(2006年)関連項目歴史 リスト ギリシャ独立戦争第一次エジプト・トルコ戦争第二次エジプト・トルコ戦争シリア戦争ウラービー革命マフディー戦争第二次エジプト=イギリス�...

Tentara menunggu perintah di Alun-alun Kerajaan, 24 Juni 1932 Bagian dari seri artikel mengenaiSejarah Thailand Prasejarah Sejarah awal Negara awalLegendaris Suvarnabhumi Thailand Tengah Dwarawati Lavo Supannabhum Thailand Utara Singhanavati Ngoenyang Hariphunchai Thailand Selatan Pan Pan Raktamaritika Langkasuka Srivijaya Tambralinga Nakhon Si Thammarat Kesultanan Pattani Kesultanan Kedah Sejarah Kerajaan Sukhothai Kerajaan Ayutthaya Kerajaan Thonburi Kerajaan Rattanakosin Periode militer Pe...

 

此條目没有列出任何参考或来源。 (2022年5月14日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 慎秀瑨(韓語:신수진,Shin Soo-jin,1981年6月11日—),藝名窈窕(요조,Yozoh),生於韓國,歌手。 生平 其藝名요조,來自於日本作家太宰治《人間失格》主角大庭葉藏的名字葉藏,漢字翻為窈窕。2007...

 

Christian Friedrich Hornschuch. クリスティアン・フリードリヒ・ホルンシュック(Christian Friedrich Hornschuch、1793年8月21日 – 1850年12月24日)はドイツの植物学者である。 生涯 バイエルン州のバート・ローダッハに生まれた。ヒルドブルクハウゼンで薬剤師の見習いとして働き始め、1813年にレーゲンスブルクの植物学者としても知られる医者の、ダーフィット・ハインリヒ・ホッ�...

Mochtar NaimAnggota Dewan Perwakilan Daerah Republik IndonesiaMasa jabatan1 Oktober 2004 – 1 Oktober 2009Daerah pemilihanSumatera BaratMayoritas116.795[1]Anggota Majelis Permusyawaratan Rakyat Republik IndonesiaMasa jabatan1 Oktober 1999 – 1 Oktober 2004Grup parlemenUtusan Daerah Informasi pribadiLahir(1932-12-25)25 Desember 1932Sungai Penuh, Kerinci, Hindia BelandaMeninggal15 Agustus 2021(2021-08-15) (umur 88)Depok, Jawa Barat, IndonesiaKebangsaanIndonesiaS...

 

Chinese Communist Party slogan This article is part of a series aboutXi Jinping Xi Jinping Administration 2012 election as General Secretary 2017 reelection as General Secretary 2022 reelection as General Secretary New Zhijiang Army Policies and theories Belt and Road Initiative Chinese Dream Common prosperity Confidence Doctrine Four Comprehensives Comprehensive Deepening Reforms Chinese-style modernization Foreign policy Eight Musts Eight-point Regulation Targeted Poverty Alleviation Two Es...

 
Kembali kehalaman sebelumnya