Positive integer with more divisors than all smaller positive integers
This article is about numbers having many divisors. For numbers factorized only to powers of 2, 3, 5 and 7 (also named 7-smooth numbers), see Smooth number.
A highly composite number is a positiveinteger that has more divisors than all smaller positive integers. A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are.
Ramanujan wrote a paper on highly composite numbers in 1915.[1]
The mathematician Jean-Pierre Kahane suggested that Plato must have known about highly composite numbers as he deliberately chose such a number, 5040 (= 7!), as the ideal number of citizens in a city.[2] Furthermore, Vardoulakis and Pugh's paper delves into a similar inquiry concerning the number 5040.[3]
Examples
The first 41 highly composite numbers are listed in the table below (sequence A002182 in the OEIS). The number of divisors is given in the column labeled d(n). Asterisks indicate superior highly composite numbers.
Note: Numbers in bold are themselves highly composite numbers. Only the twentieth highly composite number 7560 (= 3 × 2520) is absent. 10080 is a so-called 7-smooth number(sequence A002473 in the OEIS).
The 15,000th highly composite number can be found on Achim Flammenkamp's website. It is the product of 230 primes:
where is the th successive prime number, and all omitted terms (a22 to a228) are factors with exponent equal to one (i.e. the number is ). More concisely, it is the product of seven distinct primorials:
Roughly speaking, for a number to be highly composite it has to have prime factors as small as possible, but not too many of the same. By the fundamental theorem of arithmetic, every positive integer n has a unique prime factorization:
where are prime, and the exponents are positive integers.
Any factor of n must have the same or lesser multiplicity in each prime:
So the number of divisors of n is:
Hence, for a highly composite number n,
the k given prime numbers pi must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
the sequence of exponents must be non-increasing, that is ; otherwise, by exchanging two exponents we would again get a smaller number than n with the same number of divisors (for instance 18 = 21 × 32 may be replaced with 12 = 22 × 31; both have six divisors).
Also, except in two special cases n = 4 and n = 36, the last exponent ck must equal 1. It means that 1, 4, and 36 are the only square highly composite numbers. Saying that the sequence of exponents is non-increasing is equivalent to saying that a highly composite number is a product of primorials or, alternatively, the smallest number for its prime signature.
Note that although the above described conditions are necessary, they are not sufficient for a number to be highly composite. For example, 96 = 25 × 3 satisfies the above conditions and has 12 divisors but is not highly composite since there is a smaller number (60) which has the same number of divisors.
Asymptotic growth and density
If Q(x) denotes the number of highly composite numbers less than or equal to x, then there are two constants a and b, both greater than 1, such that
The first part of the inequality was proved by Paul Erdős in 1944 and the second part by Jean-Louis Nicolas in 1988. We have
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is 245,044,800; it has a digit sum of 27, which does not divide evenly into 245,044,800.
10 of the first 38 highly composite numbers are superior highly composite numbers.
The sequence of highly composite numbers (sequence A002182 in the OEIS) is a subset of the sequence of smallest numbers k with exactly n divisors (sequence A005179 in the OEIS).
Highly composite numbers whose number of divisors is also a highly composite number are
Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number.[8] Due to their ease of use in calculations involving fractions, many of these numbers are used in traditional systems of measurement and engineering designs.
^Kahane, Jean-Pierre (February 2015), "Bernoulli convolutions and self-similar measures after Erdős: A personal hors d'oeuvre", Notices of the American Mathematical Society, 62 (2): 136–140. Kahane cites Plato's Laws, 771c.
2006 aviation accident Air Algérie Flight 22087T-VHG, the aircraft involved in the accidentAccidentDate13 August 2006 (2006-08-13)SummaryInstrument failure leading to a loss of control[1]SitePiacenza, ItalyAircraftAircraft typeLockheed L-100-30 HerculesOperatorAir AlgérieICAO flight No.DAH2208Call signAIR ALGERIE 2208Registration7T-VHGFlight originHouari Boumediene AirportDestinationFrankfurt AirportOccupants3Crew3Fatalities3Survivors0 Air Algérie Flight 2208 wa...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) الاعتراف الأخيرمعلومات عامةالصنف الفني فيلم رعب تاريخ الصدور 1978اللغة الأصلية العربيةالبلد مصرالطاقم
Takuro Fujii Takuro Fujii Natação Nascimento 21 de abril de 1985 (38 anos)Kawachinagano, Osaka Nacionalidade japonês(esa) Medalhas Jogos Olímpicos Prata Londres 2012 4×100 m medley Bronze Pequim 2008 4×100 m medley Campeonatos Mundiais Bronze Barcelona 2013 4×100 m medley Campeonato Pan-Pacífico Prata Irvine 2010 4×100 m medley Bronze Irvine 2010 100 m borboleta Jogos Asiáticos Bronze Cantão 2010 100 m livre Takuro Fujii (Kawachinagano, 21 de abril de 1985) é um nadador ...
Jalan Tol Lingkar Luar BogorBogor Outer Ring RoadBORRInformasi ruteDikelola oleh PT Marga Sarana Jabar (MSJ)Panjang:11 km (7 mi)Berdiri:23 November 2009; 14 tahun lalu (2009-11-23) – sekarangSejarah:Dibangun tahun 2005-sekarangPersimpangan besarUjung Barat:Salabenda, BogorJalan Tol Depok-AntasariJalan Tol Bogor-Serpong via ParungJalan Tol Salabenda-Dramaga-Caringin/Bocimi (rencana)Ujung Timur:Sentul Selatan, Bogor Jalan Tol JagorawiJalan Tol Sentul Selatan-Karawang Barat ...
Nota: Para outras cidades com este nome, veja San Martino. Coordenadas: 45° 9' N 9° 8' E San Martino Siccomario Comuna Localização San Martino SiccomarioLocalização de San Martino Siccomario na Itália Coordenadas 45° 9' N 9° 8' E Região Lombardia Província Pavia Características geográficas Área total 14 km² População total 5 040 hab. Densidade 360 hab./km² Altitude 63 m Outros dados Comunas limítrofes Carbon...
Johannes Steen Primer ministro de Noruega 6 de marzo de 1891-2 de mayo de 1893Monarca Oscar IIPredecesor Emil Stang, Sr.Sucesor Emil Stang, Sr. 17 de febrero de 1898-21 de abril de 1902Monarca Oscar IIPredecesor Francis HagerupSucesor Otto Blehr Información personalNacimiento 22 de julio de 1827 Christiania (Unión entre Suecia y Noruega) Fallecimiento 1 de abril de 1906 (78 años)Voss (Noruega) Sepultura Cementerio de Nuestro Salvador de Oslo Nacionalidad NoruegaFamiliaPadre John Svaboe Ste...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2020) ماري ميكر معلومات شخصية الميلاد سبتمبر 1959 (64 سنة) بورتلاند مواطنة الولايات المتحدة الحياة العملية المدرسة الأم جامعة ديباو (التخصص:علم النفس) (ا
Facilities in rural U.S. communities Small-town opera houses exist in rural communities throughout the United States. Unlike metropolitan opera houses in the United States and other areas of the world, small-town opera houses in the U.S. were constructed to operate as theatrical, versus operatic, performance venues. The name opera house was generally applied to the buildings to differentiate them from less reputable facilities. History From the 1850s to 1920s, opera houses were constructed in...
Pour les articles homonymes, voir Edurne. Edurne Edurne en 2015Informations générales Surnom Edurne Nom de naissance Edurne García Almagro Naissance 22 décembre 1985 (37 ans)Madrid, Espagne Activité principale Chanteuse Genre musical Pop Années actives Depuis 2006 modifier Edurne García Almagro, dite Edurne, est une chanteuse espagnole, née à Madrid le 22 décembre 1985. Biographie À 13 ans, Edurne est choisie pour faire partie du groupe Trastos avec lequel elle enregistre 3 di...
Bahasa BunakDituturkan di Indonesia Timor Leste Wilayah Nusa Tenggara Timur Penutur50.000 di Indonesia dan 50.000 di Timor Timur (Voegelin dan Voegelin, 1977)Rumpun bahasaTrans-Nugini Trans-Nugini BaratTimor Barat-Alor-PantarBunakBahasa Bunak Kode bahasaISO 639-1-ISO 639-2-ISO 639-3bfn Portal BahasaSunting kotak info • L • B • PWBantuan penggunaan templat ini PemberitahuanTemplat ini mendeteksi bahwa artikel bahasa ini masih belum dinilai kual...
Tentara menunggu perintah di Alun-alun Kerajaan, 24 Juni 1932 Bagian dari seri artikel mengenaiSejarah Thailand Prasejarah Sejarah awal Negara awalLegendaris Suvarnabhumi Thailand Tengah Dwarawati Lavo Supannabhum Thailand Utara Singhanavati Ngoenyang Hariphunchai Thailand Selatan Pan Pan Raktamaritika Langkasuka Srivijaya Tambralinga Nakhon Si Thammarat Kesultanan Pattani Kesultanan Kedah Sejarah Kerajaan Sukhothai Kerajaan Ayutthaya Kerajaan Thonburi Kerajaan Rattanakosin Periode militer Pe...
Christian Friedrich Hornschuch. クリスティアン・フリードリヒ・ホルンシュック(Christian Friedrich Hornschuch、1793年8月21日 – 1850年12月24日)はドイツの植物学者である。 生涯 バイエルン州のバート・ローダッハに生まれた。ヒルドブルクハウゼンで薬剤師の見習いとして働き始め、1813年にレーゲンスブルクの植物学者としても知られる医者の、ダーフィット・ハインリヒ・ホッ�...
Mochtar NaimAnggota Dewan Perwakilan Daerah Republik IndonesiaMasa jabatan1 Oktober 2004 – 1 Oktober 2009Daerah pemilihanSumatera BaratMayoritas116.795[1]Anggota Majelis Permusyawaratan Rakyat Republik IndonesiaMasa jabatan1 Oktober 1999 – 1 Oktober 2004Grup parlemenUtusan Daerah Informasi pribadiLahir(1932-12-25)25 Desember 1932Sungai Penuh, Kerinci, Hindia BelandaMeninggal15 Agustus 2021(2021-08-15) (umur 88)Depok, Jawa Barat, IndonesiaKebangsaanIndonesiaS...
Chinese Communist Party slogan This article is part of a series aboutXi Jinping Xi Jinping Administration 2012 election as General Secretary 2017 reelection as General Secretary 2022 reelection as General Secretary New Zhijiang Army Policies and theories Belt and Road Initiative Chinese Dream Common prosperity Confidence Doctrine Four Comprehensives Comprehensive Deepening Reforms Chinese-style modernization Foreign policy Eight Musts Eight-point Regulation Targeted Poverty Alleviation Two Es...