Diagram showing the proportion of a receptor bound to a ligand
This article is about the Hill equation as an equation used in biochemical characterization. For other uses, see Hill differential equation.
In biochemistry and pharmacology, the Hill equation refers to two closely related equations that reflect the binding of ligands to macromolecules, as a function of the ligand concentration. A ligand is "a substance that forms a complex with a biomolecule to serve a biological purpose" (ligand definition), and a macromolecule is a very large molecule, such as a protein, with a complex structure of components (macromolecule definition). Protein-ligand binding typically changes the structure of the target protein, thereby changing its function in a cell.
The distinction between the two Hill equations is whether they measure occupancy or response. The Hill equation reflects the occupancy of macromolecules: the fraction that is saturated or bound by the ligand.[1][2][nb 1] This equation is formally equivalent to the Langmuir isotherm.[3] Conversely, the Hill equation proper reflects the cellular or tissue response to the ligand: the physiological output of the system, such as muscle contraction.
The binding of a ligand to a macromolecule is often enhanced if there are already other ligands present on the same macromolecule (this is known as cooperative binding). The Hill equation is useful for determining the degree of cooperativity of the ligand(s) binding to the enzyme or receptor. The Hill coefficient provides a way to quantify the degree of interaction between ligand binding sites.[5]
The Hill equation (for response) is important in the construction of dose-response curves.
Proportion of ligand-bound receptors
The Hill equation is commonly expressed in the following ways.[2][7][8]
In pharmacology, is often written as , where is the ligand, equivalent to L, and is the receptor. can be expressed in terms of the total amount of receptor and ligand-bound receptor concentrations: . is equal to the ratio of the dissociation rate of the ligand-receptor complex to its association rate ().[8] Kd is the equilibrium constant for dissociation. is defined so that , this is also known as the microscopic dissociation constant and is the ligand concentration occupying half of the binding sites. In recent literature, this constant is sometimes referred to as .[8]
Gaddum equation
The Gaddum equation is a further generalisation of the Hill-equation, incorporating the presence of a reversible competitive antagonist.[1] The Gaddum equation is derived similarly to the Hill-equation but with 2 equilibria: both the ligand with the receptor and the antagonist with the receptor. Hence, the Gaddum equation has 2 constants: the equilibrium constants of the ligand and that of the antagonist
Hill plot
The Hill plot is the rearrangement of the Hill equation into a straight line.
Taking the reciprocal of both sides of the Hill equation, rearranging, and inverting again yields: . Taking the logarithm of both sides of the equation leads to an alternative formulation of the Hill-Langmuir equation:
.
This last form of the Hill equation is advantageous because a plot of versus yields a linear plot, which is called a Hill plot.[7][8] Because the slope of a Hill plot is equal to the Hill coefficient for the biochemical interaction, the slope is denoted by . A slope greater than one thus indicates positively cooperative binding between the receptor and the ligand, while a slope less than one indicates negatively cooperative binding.
Transformations of equations into linear forms such as this were very useful before the widespread use of computers, as they allowed researchers to determine parameters by fitting lines to data. However, these transformations affect error propagation, and this may result in undue weight to error in data points near 0 or 1.[nb 2] This impacts the parameters of linear regression lines fitted to the data. Furthermore, the use of computers enables more robust analysis involving nonlinear regression.
Tissue response
A distinction should be made between quantification of drugs binding to receptors and drugs producing responses. There may not necessarily be a linear relationship between the two values. In contrast to this article's previous definition of the Hill equation, the IUPHAR defines the Hill equation in terms of the tissue response , as[1]
where is the drug concentration, is the Hill coefficient, and is the drug concentration that produces a 50% maximal response. Dissociation constants (in the previous section) relate to ligand binding, while reflects tissue response.
This form of the equation can reflect tissue/cell/population responses to drugs and can be used to generate dose response curves. The relationship between and EC50 may be quite complex as a biological response will be the sum of myriad factors; a drug will have a different biological effect if more receptors are present, regardless of its affinity.
The Del-Castillo Katz model is used to relate the Hill equation to receptor activation by including a second equilibrium of the ligand-bound receptor to an activated form of the ligand-bound receptor.
Statistical analysis of response as a function of stimulus may be performed by regression methods such as the probit model or logit model, or other methods such as the Spearman–Kärber method.[9] Empirical models based on nonlinear regression are usually preferred over the use of some transformation of the data that linearizes the dose-response relationship.[10]
Hill coefficient
The Hill coefficient is a measure of ultrasensitivity (i.e. how steep is the response curve).
The Hill coefficient, or , may describe cooperativity (or possibly other biochemical properties, depending on the context in which the Hill equation is being used). When appropriate,[clarification needed] the value of the Hill coefficient describes the cooperativity of ligand binding in the following way:
. Positively cooperative binding: Once one ligand molecule is bound to the enzyme, its affinity for other ligand molecules increases. For example, the Hill coefficient of oxygen binding to haemoglobin (an example of positive cooperativity) falls within the range of 1.7–3.2.[5]
. Negatively cooperative binding: Once one ligand molecule is bound to the enzyme, its affinity for other ligand molecules decreases.
. Noncooperative (completely independent) binding: The affinity of the enzyme for a ligand molecule is not dependent on whether or not other ligand molecules are already bound. When n=1, we obtain a model that can be modeled by Michaelis–Menten kinetics,[11] in which , the Michaelis–Menten constant.
The Hill coefficient can be calculated approximately in terms of the cooperativity index of Taketa and Pogell[12] as follows:[13]
.
where and are the input values needed to produce the 10% and 90% of the maximal response, respectively.
Reversible form
The most common form of the Hill equation is its irreversible form. However, when building computational models a reversible form is often required in order to model product inhibition. For this reason, Hofmeyr and Cornish-Bowden devised the reversible Hill equation.[14]
Relationship to the elasticity coefficients
The Hill coefficient is also intimately connected to the elasticity coefficient where the Hill coefficient can be shown to equal:
where is the fractional saturation, , and the elasticity coefficient.
This is derived by taking the slope of the Hill equation:
and expanding the slope using the quotient rule. The result shows that the elasticity can never exceed since the equation above can be rearranged to:
Applications
The Hill equation is used extensively in pharmacology to quantify the functional parameters of a drug[citation needed] and are also used in other areas of biochemistry.
The Hill equation can be used to describe dose-response relationships, for example ion channel open-probability (P-open) vs. ligand concentration.[15]
Regulation of gene transcription
The Hill equation can be applied in modelling the rate at which a gene product is produced when its parent gene is being regulated by transcription factors (e.g., activators and/or repressors).[11] Doing so is appropriate when a gene is regulated by multiple binding sites for transcription factors, in which case the transcription factors may bind the DNA in a cooperative fashion.[16]
If the production of protein from gene X is up-regulated (activated) by a transcription factor Y, then the rate of production of protein X can be modeled as a differential equation in terms of the concentration of activated Y protein:
,
where k is the maximal transcription rate of gene X.
Likewise, if the production of protein from gene Y is down-regulated (repressed) by a transcription factor Z, then the rate of production of protein Y can be modeled as a differential equation in terms of the concentration of activated Z protein:
,
where k is the maximal transcription rate of gene Y.
Limitations
Because of its assumption that ligand molecules bind to a receptor simultaneously, the Hill equation has been criticized as a physically unrealistic model.[5] Moreover, the Hill coefficient should not be considered a reliable approximation of the number of cooperative ligand binding sites on a receptor[5][17] except when the binding of the first and subsequent ligands results in extreme positive cooperativity.[5]
Unlike more complex models, the relatively simple Hill equation provides little insight into underlying physiological mechanisms of protein-ligand interactions. This simplicity, however, is what makes the Hill equation a useful empirical model, since its use requires little a priori knowledge about the properties of either the protein or ligand being studied.[2] Nevertheless, other, more complex models of cooperative binding have been proposed.[7] For more information and examples of such models, see Cooperative binding.
Global sensitivity measure such as Hill coefficient do not characterise the local behaviours of the s-shaped curves. Instead, these features are well captured by the response coefficient measure.[18]
There is a link between Hill Coefficient and Response coefficient, as follows. Altszyler et al. (2017) have shown that these ultrasensitivity measures can be linked.[13]
^For clarity, this article will use the International Union of Basic and Clinical Pharmacology convention of distinguishing between the Hill-Langmuir equation (for receptor saturation) and Hill equation (for tissue response)
^See Propagation of uncertainty. The function propagates errors in as . Hence errors in values of near or are given far more weight than those for
^ abcGesztelyi, Rudolf; Zsuga, Judit; Kemeny-Beke, Adam; Varga, Balazs; Juhasz, Bela; Tosaki, Arpad (31 March 2012). "The Hill equation and the origin of quantitative pharmacology". Archive for History of Exact Sciences. 66 (4): 427–438. doi:10.1007/s00407-012-0098-5. ISSN0003-9519. S2CID122929930.
^ abcdNelson, David L.; Cox, Michael M. (2013). Lehninger principles of biochemistry (6th ed.). New York: W.H. Freeman. pp. 158–162. ISBN978-1429234146.
^ abAlon, Uri (2007). An Introduction to Systems Biology: Design Principles of Biological Circuits ([Nachdr.] ed.). Boca Raton, FL: Chapman & Hall. ISBN978-1-58488-642-6.
d'A Heck, Henry (1971). "Statistical theory of cooperative binding to proteins. Hill equation and the binding potential". J. Am. Chem. Soc. 93 (1): 23–29. doi:10.1021/ja00730a004. PMID5538860.
Colquhoun D (2006). "The quantitative analysis of drug-receptor interactions: a short history". Trends Pharmacol Sci. 27 (3): 149–57. doi:10.1016/j.tips.2006.01.008. PMID16483674.
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2017) كالاماكيون، زاكينثوستقسيم إداريالبلد اليونان[1] التقسيم الأعلى Zakynthos Municipality (en) السكانعدد السكان 890 وفق إحصاء السكان (2011) معلومات أخرىمنطقة زمنية ت ع م+02:00...
Rita Montaner Información personalNombre de nacimiento Rita Aurelia Fulcida Montaner y Facenda Nacimiento 20 de agosto de 1900 o 22 de mayo de 1900 Guanabacoa (Cuba) Fallecimiento 17 de abril de 1958 La Habana (Cuba) Causa de muerte Cáncer Sepultura Necrópolis de Cristóbal Colón Nacionalidad CubanaFamiliaCónyuge Xavier Cugat (1918-1920) EducaciónEducada en Conservatorio Carlos Alfredo Peyrellade Información profesionalOcupación Cantante de ópera, pianista, actriz de teatro, act...
Frans Stoppelman Frans Stoppelman, 1965 Persoonsgegevens Geboren 9 januari 1921 Overleden Mexico-stad, 23 oktober 2007 Geboorteland Nederland Beroep(en) fotograaf RKD-profiel Portaal Kunst & Cultuur Frans Stoppelman (Amsterdam, 9 januari 1921 - Mexico-stad, 23 oktober 2007) was een Nederlandse persfotograaf die zich na de Tweede Wereldoorlog in Latijns-Amerika vestigde. Zijn oog voor bizarre situaties leverde hem internationale erkenning op. Zijn foto's werden gepubliceerd in...
Bandar Udara Regional YanbuBandar Udara Pangeran Abdul Muhsin Bin Abdul Azizمطار الأمير عبد المحسن بن عبد العزيز الإقليميTerminal penumpang baru dan Menara Kontrol Bandar Udara.IATA: YNBICAO: OEYN YNBLokasi Bandar Udara di Arab SaudiInformasiJenisPublikMelayaniYanbuLokasiYanbu, Arab SaudiKetinggian dpl8 mdplKoordinat24°08′39″N 38°03′48″E / 24.14417°N 38.06333°E / 24.14417; 38.06333Landasan pacu Arah Panjang Pe...
1937 film by George Stevens A Damsel in DistressA Damsel in Distress film posterDirected byGeorge StevensScreenplay byP. G. WodehouseErnest PaganoS. K. LaurenBased onA Damsel in Distress1919 novelby P. G. Wodehouse 1928 play by Wodehouse and Ian HayProduced byPandro S. BermanStarring Fred Astaire George Burns Gracie Allen Joan Fontaine CinematographyJoseph H. AugustEdited byHenry BermanMusic by George Gershwin (songs) Victor Baravalle ProductioncompanyRKO Radio PicturesDistributed byRKO Radio...
أوكتافيوس أمير بريطانيا العظمى معلومات شخصية الميلاد 23 فبراير 1779(1779-02-23)قصر بكنغهام الوفاة 3 مايو 1783 (4 سنة) سبب الوفاة جدري مكان الدفن كنيسة القديس جورج مواطنة مملكة بريطانيا العظمى الأب جورج الثالث ملك المملكة المتحدة الأم شارلوت من مكلنبورغ-ستريليت
Dit is een lijst van ministers van de Promotie van Brussel in de Franse Gemeenschapsregering. Lijst Nr. Minister Partij Begin Einde Regering(en) 1 Rachid Madrane(1968) PS 22 juli 2014 17 september 2019 Demotte III 2 Valérie Glatigny(1973) MR 17 september 2019 13 juli 2023 Jeholet 3 Françoise Bertieaux(1958) MR 19 juli 2023 heden Jeholet Tijdlijn Zie ook Lijst van Belgische ministers van het Brussels Gewest Lijst van Vlaamse ministers van Brusselse Aangelegenheden · · Lijsten van Waalse/Fr...
Board game EvoBox cover of the German editionPlayers3–5Setup time20 minutesPlaying time90–120 minutesChanceMediumAge range12 +SkillsStrategic thought Evo: The Last Gasp of the Dinosaurs is a German-style board game for three to five players, designed by Philippe Keyaerts and published by Eurogames.[1] The game won the GAMES Magazine award for Game of the year 2002.[2][3] It was nominated for the Origins Award for Best Graphic Presentation of a Board Game 2000.[...
Irish shoegaze band Not to be confused with Bullet for My Valentine. My Bloody ValentineClockwise from top left: Kevin Shields, Bilinda Butcher, Colm Ó Cíosóig, and Debbie GoogeBackground informationOriginDublin, IrelandGenres Shoegaze[1][2] noise pop[3] dream pop[4] experimental rock[5] post-punk[6] DiscographyMy Bloody Valentine discographyYears active1983–19972007–presentLabels Tycoon Fever Kaleidoscope Sound Lazy Creation Sire Island ...
World War II tank ace Lafayette Green PoolLafayette G. Pool in 1949Birth nameLafayette Green PoolNickname(s)War DaddyBorn(1919-07-23)July 23, 1919Odem, Texas, U.S.DiedMay 30, 1991(1991-05-30) (aged 71)Killeen, Texas, U.S.BuriedFort Sam Houston National CemeteryAllegiance United StatesService/branch United States ArmyYears of service1941–1946 1948–1960RankChief Warrant Officer 2Service number38032791[1]Unit3rd Platoon, Company I, 3rd Battalion, 32nd Armored Regi...
This article is about video games unofficially produced by hobbyists for closed systems. For modifications to ROM images of video games, see ROM hacking. For the package manager, see Homebrew (package manager). For other uses, see Homebrew (disambiguation). Hobbyist-developed games for closed systems This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may need to be rewritten to ...
STAIN Sultan Abdurrahman KepriMotoBersendikan Wahyu Berteraskan IlmuJenisPerguruan tinggi Islam negeri di IndonesiaDidirikan20 Juli 2010Lembaga indukKementerian Agama Republik IndonesiaAfiliasiIslamKetuaDr. Muhammad Faisal, M.Ag.AlamatJl. Lintas Barat KM. 19, Ceruk Ijuk, Toapaya Asri, Bintan, Kepulauan Riau, Bintan, Kepulauan RiauNama julukanSTAIN SAR KEPRISitus webstainkepri.ac.id STAIN Sultan Abdurrahman adalah perguruan tinggi Islam negeri di Indonesia yang berada di Bintan, Kepulauan Riau...
American singer and guitarist Star AnnaStar Anna in 2013 Star Anna Constantia Krogstie Bamford[1] is an American singer and guitarist from Ellensburg, Washington who plays Americana[2] and alt-country.[1] Her band Star Anna and the Laughing Dogs includes Justin Davis (guitar), Keith Ash (bass), and Travis Yost (drums).[3] Since summer 2010, the band has also included Ty Bailie on keyboards.[4] Davis replaced original guitarist Corey Dosch, who left the ...
Final Piala EFL 2019TurnamenPiala EFL 2018–2019 Manchester City Chelsea 0 0 setelah perpanjangan waktuManchester City menang 4–3 pada adu penaltiTanggal24 Februari 2019StadionStadion Wembley, LondonPemain Terbaik Bernardo Silva (Manchester City)[1]WasitJonathan Moss (West Yorkshire)[2]Penonton81.775← 2018 2020 → Final Piala EFL 2019 adalah pertandingan final ke-59 dari turnamen sepak bola Piala EFL untuk menentukan juara musim 2018–2019. Pertandingan ini dise...
Pratt & Whitney J58-P4 (penunjukan perusahaan: JT11D) - adalah sebuah mesin turbojet siklus variabel, yang digunakan pada Lockheed A-12, dan kemudian pada YF-12 dan SR-71 Blackbird. Mesin ini pada dasarnya adalah hibrida dari turbojet dan mesin ramjet. Referensi lbsMesin pesawat Pratt & WhitneyDaftar mesin pesawat Pratt & WhitneyMesin radial Dari perpindahan R-985 · R-1340 · R-1535 · R-1690 · R-1830 · R-1860 · R-200...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Mei 2016. Mesakh Frans RumbinoBerkas:Frans Sisir.jpgLahirMesakh Frans Rumbino(1972-02-11)11 Februari 1972Biak, PapuaNama lainFrans SisirPekerjaanMusikusTahun aktif1990 - sekarangSuami/istriJoyce JeannyAnakAnnelo Rumbino Mesakh Frans Rumbino (lahir 11 Febru...
Richard Johnson dan Janet Suzman dalam film tahun 1974. Antony and Cleopatra adalah sandiwara tragedi karya William Shakespeare yang ditulis sekitar tahun 1623. Terjemahan buku ke dalam bahasa Indonesianya berjudul Antonius, dan Cleopatra dan dilakukan oleh Trisno Sumardjo.<ref>Trisno Sumardjo, Antonius dan Cleopatra (belum diterbitkan) 1963[pranala nonaktif permanen][pranala nonaktif permanen][pranala nonaktif permanen]{{Pranala mati|date=Februari 2021 |bot=Inte...