Isotopes of cadmium
Naturally occurring cadmium (48 Cd) is composed of 8 isotopes . For two of them, natural radioactivity was observed, and three others are predicted to be radioactive but their decays have not been observed, due to extremely long half-lives . The two natural radioactive isotopes are 113 Cd (beta decay , half-life is 8.04 × 1015 years) and 116 Cd (two-neutrino double beta decay , half-life is 2.8 × 1019 years). The other three are 106 Cd, 108 Cd (double electron capture ), and 114 Cd (double beta decay); only lower limits on their half-life times have been set. Three isotopes—110 Cd, 111 Cd, and 112 Cd—are theoretically stable. Among the isotopes absent in natural cadmium, the most long-lived are 109 Cd with a half-life of 462.6 days, and 115 Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 2.5 hours and the majority of these have half-lives that are less than 5 minutes. This element also has 12 known meta states , with the most stable being 113m Cd (t1/2 14.1 years), 115m Cd (t1/2 44.6 days) and 117m Cd (t1/2 3.36 hours).
The known isotopes of cadmium range in atomic mass from 94.950 u (95 Cd) to 131.946 u (132 Cd). The primary decay mode before the second most abundant stable isotope, 112 Cd, is electron capture and the primary modes after are beta emission and electron capture. The primary decay product before 112 Cd is element 47 (silver ) and the primary product after is element 49 (indium ).
A 2021 study has shown at high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation.[ 4]
List of isotopes
Nuclide[ n 1]
Z
N
Isotopic mass (Da ) [ n 2] [ n 3]
Half-life [ n 4]
Decay mode [ n 5]
Daughter isotope [ n 6] [ n 7]
Spin andparity [ n 8] [ n 9]
Natural abundance (mole fraction)
Excitation energy[ n 9]
Normal proportion
Range of variation
95 Cd
48
47
94.94987(64)#
5# ms
9/2+#
96 Cd
48
48
95.93977(54)#
1# s
β+
96 Ag
0+
97 Cd
48
49
96.93494(43)#
2.8(6) s
β+ (>99.9%)
97 Ag
9/2+#
β+ , p (<.1%)
96 Pd
98 Cd
48
50
97.92740(8)
9.2(3) s
β+ (99.975%)
98 Ag
0+
β+ , p (.025%)
97 Ag
98m Cd
2427.5(6) keV
190(20) ns
8+#
99 Cd
48
51
98.92501(22)#
16(3) s
β+ (99.78%)
99 Ag
(5/2+)
β+ , p (.21%)
98 Pd
β+ , α (10−4 %)
95 Rh
100 Cd
48
52
99.92029(10)
49.1(5) s
β+
100 Ag
0+
101 Cd
48
53
100.91868(16)
1.36(5) min
β+
101 Ag
(5/2+)
102 Cd
48
54
101.91446(3)
5.5(5) min
β+
102 Ag
0+
103 Cd
48
55
102.913419(17)
7.3(1) min
β+
103 Ag
5/2+
104 Cd
48
56
103.909849(10)
57.7(10) min
β+
104 Ag
0+
105 Cd
48
57
104.909468(12)
55.5(4) min
β+
105 Ag
5/2+
106 Cd
48
58
105.906459(6)
Observationally Stable [ n 10]
0+
0.0125(6)
107 Cd
48
59
106.906618(6)
6.50(2) h
β+
107m Ag
5/2+
108 Cd
48
60
107.904184(6)
Observationally Stable [ n 11]
0+
0.0089(3)
109 Cd
48
61
108.904982(4)
461.4(12) d
EC
109 Ag
5/2+
109m1 Cd
59.6(4) keV
12(2) μs
1/2+
109m2 Cd
463.0(5) keV
10.9(5) μs
11/2
110 Cd
48
62
109.9030021(29)
Stable
0+
0.1249(18)
111 Cd[ n 12]
48
63
110.9041781(29)
Stable
1/2+
0.1280(12)
111m Cd
396.214(21) keV
48.50(9) min
IT
111 Cd
11/2−
112 Cd[ n 12]
48
64
111.9027578(29)
Stable
0+
0.2413(21)
113 Cd[ n 12] [ n 13]
48
65
112.9044017(29)
8.04(5)×1015 y
β−
113 In
1/2+
0.1222(12)
113m Cd[ n 12]
263.54(3) keV
14.1(5) y
β− (99.86%)
113 In
11/2−
IT (.139%)
113 Cd
114 Cd[ n 12]
48
66
113.9033585(29)
Observationally Stable [ n 14]
0+
0.2873(42)
115 Cd[ n 12]
48
67
114.9054310(29)
53.46(5) h
β−
115m In
1/2+
115m Cd
181.0(5) keV
44.56(24) d
β−
115m In
(11/2)−
116 Cd[ n 12] [ n 13]
48
68
115.904756(3)
2.8(2)×1019 y
β− β−
116 Sn
0+
0.0749(18)
117 Cd
48
69
116.907219(4)
2.49(4) h
β−
117m In
1/2+
117m Cd
136.4(2) keV
3.36(5) h
β−
117m In
(11/2)−
118 Cd
48
70
117.906915(22)
50.3(2) min
β−
118 In
0+
119 Cd
48
71
118.90992(9)
2.69(2) min
β−
119m In
(3/2+)
119m Cd
146.54(11) keV
2.20(2) min
β−
119m In
(11/2−)#
120 Cd
48
72
119.90985(2)
50.80(21) s
β−
120 In
0+
121 Cd
48
73
120.91298(9)
13.5(3) s
β−
121m In
(3/2+)
121m Cd
214.86(15) keV
8.3(8) s
β−
121m In
(11/2−)
122 Cd
48
74
121.91333(5)
5.24(3) s
β−
122 In
0+
123 Cd
48
75
122.91700(4)
2.10(2) s
β−
123m In
(3/2)+
123m Cd
316.52(23) keV
1.82(3) s
β−
123 In
(11/2−)
IT
123 Cd
124 Cd
48
76
123.91765(7)
1.25(2) s
β−
124 In
0+
125 Cd
48
77
124.92125(7)
0.65(2) s
β−
125m In
(3/2+)#
125m Cd
50(70) keV
570(90) ms
β−
125 In
11/2−#
126 Cd
48
78
125.92235(6)
0.515(17) s
β−
126 In
0+
127 Cd
48
79
126.92644(8)
0.37(7) s
β−
127m In
(3/2+)
128 Cd
48
80
127.92776(32)
0.28(4) s
β−
128 In
0+
129 Cd
48
81
128.93215(32)#
242(8) ms
β− (>99.9%)
129 In
3/2+#
IT (<.1%)
129 Cd
129m Cd
0(200)# keV
104(6) ms
11/2−#
130 Cd
48
82
129.9339(3)
162(7) ms
β− (96%)
130 In
0+
β− , n (4%)
129 In
131 Cd
48
83
130.94067(32)#
68(3) ms
7/2−#
132 Cd
48
84
131.94555(54)#
97(10) ms
0+
This table header & footer:
^ m Cd – Excited nuclear isomer .
^ ( ) – Uncertainty (1σ ) is given in concise form in parentheses after the corresponding last digits.
^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
^ Bold half-life – nearly stable, half-life longer than age of universe .
^
Modes of decay:
^ Bold italics symbol as daughter – Daughter product is nearly stable.
^ Bold symbol as daughter – Daughter product is stable.
^ ( ) spin value – Indicates spin with weak assignment arguments.
^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
^ Believed to decay by β+ β+ to 106 Pd with a half-life over 4.1×1020 years
^ Believed to decay by β+ β+ to 108 Pd with a half-life over 4.1×1017 years
^ a b c d e f g Fission product
^ a b Primordial radionuclide
^ Believed to undergo β− β− decay to 114 Sn with a half-life over 6.4×1018 years
Cadmium-113m
Cadmium-113m is a cadmium radioisotope and nuclear isomer with a half-life of 14.1 years. In a normal thermal reactor , it has a very low fission product yield , plus its large neutron capture cross section means that most of even the small amount produced is destroyed in the course of the nuclear fuel 's burnup; thus, this isotope is not a significant contributor to nuclear waste .
Fast fission or fission of some heavier actinides [which? ] will produce 113m Cd at higher yields.
References
^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3): 030001. doi :10.1088/1674-1137/abddae .
^ "Standard Atomic Weights: Cadmium" . CIAAW . 2013.
^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)" . Pure and Applied Chemistry . doi :10.1515/pac-2019-0603 . ISSN 1365-3075 .
^ Ratié, Gildas; Chrastný, Vladislav; Guinoiseau, Damien; Marsac, Rémi; Vaňková, Zuzana; Komárek, Michael (2021-06-01). "Cadmium Isotope Fractionation during Complexation with Humic Acid" . Environmental Science & Technology . 55 (11): 7430–7444. Bibcode :2021EnST...55.7430R . doi :10.1021/acs.est.1c00646 . ISSN 0013-936X . PMID 33970606 . S2CID 234361430 .
Isotope masses from:
Isotopic compositions and standard atomic masses from:
"News & Notices: Standard Atomic Weights Revised" . International Union of Pure and Applied Chemistry . 19 October 2005.
Half-life, spin, and isomer data selected from the following sources.
Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties" , Nuclear Physics A , 729 : 3–128, Bibcode :2003NuPhA.729....3A , doi :10.1016/j.nuclphysa.2003.11.001
National Nuclear Data Center . "NuDat 2.x database" . Brookhaven National Laboratory .
Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida : CRC Press . ISBN 978-0-8493-0485-9 .
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Hydrogen and alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
①
1
2
②
3
4
5
6
7
8
9
10
③
11
12
13
14
15
16
17
18
④
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
⑤
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
⑥
55
56
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
⑦
87
88
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
⑧
119
120
57
58
59
60
61
62
63
64
65
66
67
68
69
70
89
90
91
92
93
94
95
96
97
98
99
100
101
102