Isotopes of indium
Indium (49 In) consists of two primordial nuclides , with the most common (~ 95.7%) nuclide (115 In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted age of the Universe .
The stable isotope 113 In is only 4.3% of naturally occurring indium. Among elements with a known stable isotope, only tellurium and rhenium similarly occur with a stable isotope in lower abundance than the long-lived radioactive isotope. Other than 115 In, the longest-lived radioisotope is 111 In, with a half-life of 2.8047 days. All other radioisotopes have half-lives less than a day. This element also has 47 isomers , the longest-lived being 114m1 In, with a half-life of 49.51 days. All other meta-states have half-lives less than a day, most less than an hour, and many measured in milliseconds or less.
Indium-111 is used medically in nuclear imaging , as a radiotracer nuclide tag for gamma camera localization of protein radiopharmaceuticals , such as In-111-labeled octreotide , which binds to receptors on certain endocrine tumors (Octreoscan ).[ 4] Indium-111 is also used in indium white blood cell scans , which use nuclear medical techniques to search for hidden infections.
Several proton-rich isotopes of indium (including indium-99) have been used to measure the mass of the doubly-magic isotope tin-100.[ 5] [ 6]
List of isotopes
Nuclide[ n 1]
Z
N
Isotopic mass (Da ) [ n 2] [ n 3]
Half-life [ n 4]
Decay mode [ n 5]
Daughter isotope [ n 6] [ n 7]
Spin andparity [ n 8] [ n 4]
Natural abundance (mole fraction)
Excitation energy[ n 4]
Normal proportion
Range of variation
96 In
49
47
95.95911(54)#
1# ms [>400 ns]
β+ ?
96 Cd
9/2+#
p ?
95 Cd
97 In
49
48
96.94913(43)#
36(6) ms
β+ (97.7%)
97 Cd
9/2+#
β+ , p (2.3%)
96 Ag
p?
96 Cd
97m In
400(100)# keV
0.12(7) ms
p?
96 Cd
1/2−#
98 In
49
49
97.94213(33)#
30(1) ms
β+ (>99.87%)
98 Cd
(0+)
β+ , p (<0.13%)
97 Ag
98m In[ n 9]
820(730) keV
890(20) ms
β+ (56%)
98 Cd
(9+)
β+ , p (44%)
97 Ag
99 In
49
50
98.93411(32)#
3.11(6) s
β+ (99.71%)
99 Cd
9/2+#
β+ , p (0.29%)
98 Ag
100 In
49
51
99.9311019(24)
5.62(6) s
β+ (98.34%)
100 Cd
6+#
β+ , p (1.66%)
99 Ag
101 In
49
52
100.926414(13)
15.1(11) s
β+ (>98.3%)
101 Cd
(9/2+)
β+ , p (<1.7%)
100 Ag
101m In
640(40) keV
10# s
β+ ?
101 Cd
1/2−#
IT ?
101 In
102 In
49
53
101.9241059(49)
23.3(1) s
β+ (99.99%)
102 Cd
(6+)
β+ , p (0.0093%)
101 Ag
103 In
49
54
102.9198788(96)
60(1) s
β+
103 Cd
(9/2+)
103m In
631.7(1) keV
34(2) s
β+ (67%)
103 Cd
(1/2−)
IT (33%)
103 In
104 In
49
55
103.9182145(62)
1.80(3) min
β+
104 Cd
(5+)
104m In
93.48(10) keV
15.7(5) s
IT (80%)
104 In
(3+)
β+ (20%)
104 Cd
105 In
49
56
104.914502(11)
5.07(7) min
β+
105 Cd
9/2+
105m In
674.09(25) keV
48(6) s
IT
105 In
(1/2)−
β+ ?
105 Cd
106 In
49
57
105.9134636(13)
6.2(1) min
β+
106 Cd
7+
106m In
28.6(3) keV
5.2(1) min
β+
106 Cd
(2)+
107 In
49
58
106.910287(10)
32.4(3) min
β+
107 Cd
9/2+
107m In
678.5(3) keV
50.4(6) s
IT
107 In
1/2−
108 In
49
59
107.9096937(93)
58.0(12) min
β+
108 Cd
7+
108m In
29.75(5) keV
39.6(7) min
β+
108 Cd
2+
109 In
49
60
108.9071497(43)
4.159(10) h
β+
109 Cd
9/2+
109m1 In
649.79(10) keV
1.34(6) min
IT
109 In
1/2−
109m2 In
2101.86(11) keV
210.0(9) ms
IT
109 In
19/2+
110 In
49
61
109.907171(12)
4.92(8) h
β+
110 Cd
7+
110m In
62.08(4) keV
69.1(5) min
β+
110 Cd
2+
111 In[ n 10]
49
62
110.9051072(37)
2.8048(1) d
EC
111 Cd
9/2+
111m In
536.99(7) keV
7.7(2) min
IT
111 In
1/2−
112 In
49
63
111.9055387(46)
14.88(15) min
β+ (62%)
112 Cd
1+
β− (38%)
112 Sn
112m1 In
156.592(25) keV
20.67(8) min
IT
112 In
4+
112m2 In
350.80(5) keV
690(50) ns
IT
112 In
(7)+
112m3 In
613.82(6) keV
2.81(3) μs
IT
112 In
8−
113 In[ n 11]
49
64
112.90406045(20)
Stable
9/2+
0.04281(52)
113m In
391.699(3) keV
1.6579(4) h
IT
113 In
1/2−
114 In
49
65
113.90491641(32)
71.9(1) s
β− (99.50%)
114 Sn
1+
β+ (0.50%)
114 Cd
114m1 In
190.2682(8) keV
49.51(1) d
IT (96.75%)
114 In
5+
β+ (3.25%)
114 Cd
114m2 In
501.948(3) keV
43.1(6) ms
IT (96.75%)
114m1 In
8−
β+ (3.25%)
114 Cd
115 In[ n 11] [ n 12]
49
66
114.903878772(12)
4.41(25)×1014 a
β−
115 Sn
9/2+
0.95.719(52)
115m In
336.244(17) keV
4.486(4) h
IT (95.0%)
115 In
1/2−
β− (5.0%)
115 Sn
116 In
49
67
115.90525999(24)
14.10(3) s
β− (99.98%)
116 Sn
1+
EC (0.0237%)
116 Cd
116m1 In
127.267(6) keV
54.29(17) min
β−
116 Sn
5+
116m2 In
289.660(6) keV
2.18(4) s
IT
116m1 In
8−
117 In
49
68
116.9045157(52)
43.2(3) min
β−
117 Sn
9/2+
117m In
315.303(11) keV
116.2(3) min
β− (52.9%)
117 Sn
1/2−
IT (47.1%)
117 In
118 In
49
69
117.9063567(83)
5.0(5) s
β−
118 Sn
1+
118m1 In[ n 9]
100(50)# keV
4.364(7) min
β−
118 Sn
5+
118m2 In
240(50)# keV
8.5(3) s
IT (98.6%)
118m1 In
8−
β− (1.4%)
118 Sn
119 In
49
70
118.9058516(78)
2.4(1) min
β−
119 Sn
9/2+
119m1 In
311.37(3) keV
18.0(3) min
β− (97.4%)
119 Sn
1/2−
IT (2.6%)
119 In
119m2 In
654.27(7) keV
130(15) ns
IT
119 In
(3/2)+
119m3 In
2656.9(18) keV
265(10) ns
IT
119 In
(25/2+)
120 In
49
71
119.907967(43)
3.08(8) s
β−
120 Sn
1+
120m1 In[ n 9]
50(60)# keV
46.2(8) s
β−
120 Sn
5+
120m2 In[ n 9]
300(200)# keV
47.3(5) s
β−
120 Sn
8−
121 In
49
72
120.907853(29)
23.1(6) s
β−
121 Sn
9/2+
121m1 In
313.68(7) keV
3.88(10) min
β− (98.8%)
121 Sn
1/2−
IT (1.2%)
121 In
121m2 In
2550(100)# keV
7.3(2) μs
IT
121 In
(25/2+)
122 In
49
73
121.910282(54)
1.5(3) s
β−
122 Sn
1+
122m1 In[ n 9]
40(60)# keV
10.3(6) s
β−
122 Sn
5+
122m2 In
290(140) keV
10.8(4) s
β−
122 Sn
8−
123 In
49
74
122.910435(21)
6.17(5) s
β−
123m Sn
9/2+
123m1 In
327.21(4) keV
47.4(4) s
β−
123 Sn
1/2−
123m2 In
2078.1(6) keV
1.4(2) μs
IT
123 In
(17/2−)
123m3 In
2103(14)# keV
>100 μs
IT
123 In
(21/2−)
124 In
49
75
123.913185(33)
3.12(9) s
β−
124 Sn
3+
124m In[ n 9]
−20(60) keV
3.67(03) s
β−
124 Sn
8−
IT?
124 In
125 In
49
76
124.9136738(19)
2.36(4) s
β−
125m Sn
9/2+
125m1 In
352(12) keV
12.2(2) s
β−
125 Sn
1/2−
125m2 In
2009.4(7) keV
9.4(6) μs
IT
125 In
(19/2+)
125m3 In
2161.2(9) keV
5.0(15) ms
IT
125 In
(23/2−)
126 In
49
77
125.9164682(45)
1.53(1) s
β−
126 Sn
3+
126m1 In
90(7) keV
1.64(5) s
β−
126 Sn
8−
126m2 In
243.3(2) keV
22(2) μs
IT
126 In
1−
127 In
49
78
126.9174539(14)[ 7]
1.086(7) s
β− (>99.97%)
127m Sn
9/2+
β− , n (<0.03%)
126 Sn
127m1 In
407.9(50) keV[ 7]
3.618(21) s
β− (99.30%)
127m Sn
1/2−#
β− , n (0.70%)
126 Sn
127m2 In
1728.7(12) keV[ 7]
1.04(10) s
β−
127m Sn
(21/2−)
β− , n?
126 Sn
127m3 In
2364.7(9) keV
9(2) μs
IT
127 In
(29/2+)
128 In
49
79
127.9203536(14)
816(27) ms
β− (99.96%)
128 Sn
(3)+
β− , n (0.038%)
127 Sn
128m1 In
247.87(10) keV
23(2) μs
IT
128 In
(1)−
128m2 In
285.1(22) keV
720(100) ms
β−
128 Sn
(8−)
IT?
128 In
β− , n?
127 Sn
128m3 In
1797.6(16) keV
>0.3 s
β−
128 Sn
(16+)
IT?
128 In
β− , n?
127 Sn
129 In
49
80
128.9218085(21)
570(10) ms
β− (99.77%)
129 Sn
9/2+
β− , n (0.23%)
128 Sn
129m1 In
449.1(59) keV[ 7]
1.23(3) s
β− (96.2%)
129 Sn
1/2−
β− , n (3.6%)
128 Sn
IT?
129 In
129m2 In
1646.6(33) keV[ 7]
670(100) ms
β−
129 Sn
(23/2−)
IT?
129 In
129m3 In
1687.97(25) keV
11.2(2) μs
IT
129 In
(17/2−)
129m4 In
1927.6(33) keV[ 7]
110(15) ms
IT
129 In
(29/2+)
β− ?
129 Sn
130 In
49
81
129.9249523(19)
273(5) ms
β− (99.07%)
130 Sn
1(−)
β− , n (0.93%)
129 Sn
130m1 In[ n 9]
66.5(27) keV
540(10) ms
β− (98.20%)
130 Sn
(10-)
β− , n (1.80%)
129 Sn
130m2 In
385.4(26) keV
540(10) ms
β− (98.20%)
130 Sn
(5+)
β− , n (1.80%)
129 Sn
130m3 In
388.3(2) keV
4.6(2) μs
IT
130 In
(3+)
131 In
49
82
130.9269728(24)
261.5(28) ms
β− (97.75%)
131 Sn
9/2+
β− , n (2.25%)
130 Sn
131m1 In
376(3) keV
328(15) ms
β− (97.75%)
131 Sn
1/2−
β− , n (2.25%)
130 Sn
IT?
131 In
131m2 In
3750(90) keV
322(41) ms
β− (88%)
131 Sn
(21/2+)
β− , n (12%)
130 Sn
IT?
129 Sn
131m3 In
3783.6(5) keV
669(34) ns
IT
131 In
(17/2+)
132 In
49
83
131.932998(64)
202.2(2) ms
β− (87.7%)
132 Sn
(7−)
β− , n (12.3%)
131 Sn
β− , 2n?
130 Sn
133 In
49
84
132.93807(22)#
163.0(16) ms
β− , n (85%)
132 Sn
(9/2+)
β− (15%)
133 Sn
β− , 2n?
131 Sn
133m In
330(40)# keV
167(11) ms
β− , n (93%)
132 Sn
(1/2−)
β− (7%)
133 Sn
134 In
49
85
133.94421(22)#
140(4) ms
β− , n (65%)
133 Sn
7−#
β− ?
134 Sn
β− , 2n (<4%)
132 Sn
134m In
56.7(1) keV
3.5(4) μs
IT
134 In
(5−)
135 In
49
86
134.94943(32)#
103(3) ms
β−
135 Sn
9/2+#
β− , n?
134 Sn
β− , 2n?
133 Sn
136 In
49
87
135.95602(32)#
86(9) ms
β−
136 Sn
7−#
β− , n?
135 Sn
β− , 2n?
134 Sn
137 In
49
88
136.96154(43)#
70(40) ms
β−
137 Sn
9/2+#
β− , n?
136 Sn
β− , 2n?
135 Sn
This table header & footer:
^ m In – Excited nuclear isomer .
^ ( ) – Uncertainty (1σ ) is given in concise form in parentheses after the corresponding last digits.
^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
^
Modes of decay:
^ Bold italics symbol as daughter – Daughter product is nearly stable.
^ Bold symbol as daughter – Daughter product is stable.
^ ( ) spin value – Indicates spin with weak assignment arguments.
^ a b c d e f g Order of ground state and isomer is uncertain.
^ Used in medical applications
^ a b Fission product
^ Primordial radionuclide
References
^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3): 030001. doi :10.1088/1674-1137/abddae .
^ "Standard Atomic Weights: Indium" . CIAAW . 2011.
^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)" . Pure and Applied Chemistry . doi :10.1515/pac-2019-0603 . ISSN 1365-3075 .
^ "Octreoscan review" . Medscape.
^ "Precision mass measurements of indium isotopes allow conclusions on the mass of the doubly-magic atomic nucleus of tin-100" . GSI . 13 June 2012. Retrieved 2023-09-10 .
^ "Tin 100 probed by studying its neighboring isotopes, indium 99 and 101 – IJCLab" . Retrieved 2023-09-10 .
^ a b c d e f Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL" . journals.aps.org . arXiv :2403.04710 .
Isotope masses from:
Isotopic compositions and standard atomic masses from:
"News & Notices: Standard Atomic Weights Revised" . International Union of Pure and Applied Chemistry . 19 October 2005.
Half-life, spin, and isomer data selected from the following sources.
Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties" , Nuclear Physics A , 729 : 3–128, Bibcode :2003NuPhA.729....3A , doi :10.1016/j.nuclphysa.2003.11.001
National Nuclear Data Center . "NuDat 2.x database" . Brookhaven National Laboratory .
Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida : CRC Press . ISBN 978-0-8493-0485-9 .
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Hydrogen and alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
①
1
2
②
3
4
5
6
7
8
9
10
③
11
12
13
14
15
16
17
18
④
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
⑤
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
⑥
55
56
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
⑦
87
88
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
⑧
119
120
57
58
59
60
61
62
63
64
65
66
67
68
69
70
89
90
91
92
93
94
95
96
97
98
99
100
101
102