Share to: share facebook share twitter share wa share telegram print page

Itô diffusion

In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.

Overview

This Wiener process (Brownian motion) in three-dimensional space (one sample path shown) is an example of an Itô diffusion.

A (time-homogeneous) Itô diffusion in n-dimensional Euclidean space is a process X : [0, +∞) × Ω → Rn defined on a probability space (Ω, Σ, P) and satisfying a stochastic differential equation of the form

where B is an m-dimensional Brownian motion and b : Rn → Rn and σ : Rn → Rn×m satisfy the usual Lipschitz continuity condition

for some constant C and all x, yRn; this condition ensures the existence of a unique strong solution X to the stochastic differential equation given above. The vector field b is known as the drift coefficient of X; the matrix field σ is known as the diffusion coefficient of X. It is important to note that b and σ do not depend upon time; if they were to depend upon time, X would be referred to only as an Itô process, not a diffusion. Itô diffusions have a number of nice properties, which include

In particular, an Itô diffusion is a continuous, strongly Markovian process such that the domain of its characteristic operator includes all twice-continuously differentiable functions, so it is a diffusion in the sense defined by Dynkin (1965).

Continuity

Sample continuity

An Itô diffusion X is a sample continuous process, i.e., for almost all realisations Bt(ω) of the noise, Xt(ω) is a continuous function of the time parameter, t. More accurately, there is a "continuous version" of X, a continuous process Y so that

This follows from the standard existence and uniqueness theory for strong solutions of stochastic differential equations.

Feller continuity

In addition to being (sample) continuous, an Itô diffusion X satisfies the stronger requirement to be a Feller-continuous process.

For a point x ∈ Rn, let Px denote the law of X given initial datum X0 = x, and let Ex denote expectation with respect to Px.

Let f : Rn → R be a Borel-measurable function that is bounded below and define, for fixed t ≥ 0, u : Rn → R by

  • Lower semi-continuity: if f is lower semi-continuous, then u is lower semi-continuous.
  • Feller continuity: if f is bounded and continuous, then u is continuous.

The behaviour of the function u above when the time t is varied is addressed by the Kolmogorov backward equation, the Fokker–Planck equation, etc. (See below.)

The Markov property

The Markov property

An Itô diffusion X has the important property of being Markovian: the future behaviour of X, given what has happened up to some time t, is the same as if the process had been started at the position Xt at time 0. The precise mathematical formulation of this statement requires some additional notation:

Let Σ denote the natural filtration of (Ω, Σ) generated by the Brownian motion B: for t ≥ 0,

It is easy to show that X is adapted to Σ (i.e. each Xt is Σt-measurable), so the natural filtration F = FX of (Ω, Σ) generated by X has Ft ⊆ Σt for each t ≥ 0.

Let f : Rn → R be a bounded, Borel-measurable function. Then, for all t and h ≥ 0, the conditional expectation conditioned on the σ-algebra Σt and the expectation of the process "restarted" from Xt satisfy the Markov property:

In fact, X is also a Markov process with respect to the filtration F, as the following shows:

The strong Markov property

The strong Markov property is a generalization of the Markov property above in which t is replaced by a suitable random time τ : Ω → [0, +∞] known as a stopping time. So, for example, rather than "restarting" the process X at time t = 1, one could "restart" whenever X first reaches some specified point p of Rn.

As before, let f : Rn → R be a bounded, Borel-measurable function. Let τ be a stopping time with respect to the filtration Σ with τ < +∞ almost surely. Then, for all h ≥ 0,

The generator

Definition

Associated to each Itô diffusion, there is a second-order partial differential operator known as the generator of the diffusion. The generator is very useful in many applications and encodes a great deal of information about the process X. Formally, the infinitesimal generator of an Itô diffusion X is the operator A, which is defined to act on suitable functions f : Rn → R by

The set of all functions f for which this limit exists at a point x is denoted DA(x), while DA denotes the set of all f for which the limit exists for all x ∈ Rn. One can show that any compactly-supported C2 (twice differentiable with continuous second derivative) function f lies in DA and that

or, in terms of the gradient and scalar and Frobenius inner products,

An example

The generator A for standard n-dimensional Brownian motion B, which satisfies the stochastic differential equation dXt = dBt, is given by

,

i.e., A = Δ/2, where Δ denotes the Laplace operator.

The Kolmogorov and Fokker–Planck equations

The generator is used in the formulation of Kolmogorov's backward equation. Intuitively, this equation tells us how the expected value of any suitably smooth statistic of X evolves in time: it must solve a certain partial differential equation in which time t and the initial position x are the independent variables. More precisely, if f ∈ C2(RnR) has compact support and u : [0, +∞) × Rn → R is defined by

then u(tx) is differentiable with respect to t, u(t, ·) ∈ DA for all t, and u satisfies the following partial differential equation, known as Kolmogorov's backward equation:

The Fokker–Planck equation (also known as Kolmogorov's forward equation) is in some sense the "adjoint" to the backward equation, and tells us how the probability density functions of Xt evolve with time t. Let ρ(t, ·) be the density of Xt with respect to Lebesgue measure on Rn, i.e., for any Borel-measurable set S ⊆ Rn,

Let A denote the Hermitian adjoint of A (with respect to the L2 inner product). Then, given that the initial position X0 has a prescribed density ρ0, ρ(tx) is differentiable with respect to t, ρ(t, ·) ∈ DA* for all t, and ρ satisfies the following partial differential equation, known as the Fokker–Planck equation:

The Feynman–Kac formula

The Feynman–Kac formula is a useful generalization of Kolmogorov's backward equation. Again, f is in C2(RnR) and has compact support, and q : Rn → R is taken to be a continuous function that is bounded below. Define a function v : [0, +∞) × Rn → R by

The Feynman–Kac formula states that v satisfies the partial differential equation

Moreover, if w : [0, +∞) × Rn → R is C1 in time, C2 in space, bounded on K × Rn for all compact K, and satisfies the above partial differential equation, then w must be v as defined above.

Kolmogorov's backward equation is the special case of the Feynman–Kac formula in which q(x) = 0 for all x ∈ Rn.

The characteristic operator

Definition

The characteristic operator of an Itô diffusion X is a partial differential operator closely related to the generator, but somewhat more general. It is more suited to certain problems, for example in the solution of the Dirichlet problem.

The characteristic operator of an Itô diffusion X is defined by

where the sets U form a sequence of open sets Uk that decrease to the point x in the sense that

and

is the first exit time from U for X. denotes the set of all f for which this limit exists for all x ∈ Rn and all sequences {Uk}. If ExU] = +∞ for all open sets U containing x, define

Relationship with the generator

The characteristic operator and infinitesimal generator are very closely related, and even agree for a large class of functions. One can show that

and that

In particular, the generator and characteristic operator agree for all C2 functions f, in which case

Application: Brownian motion on a Riemannian manifold

The characteristic operator of a Brownian motion is 1/2 times the Laplace-Beltrami operator. Here it is the Laplace-Beltrami operator on a 2-sphere.

Above, the generator (and hence characteristic operator) of Brownian motion on Rn was calculated to be 1/2Δ, where Δ denotes the Laplace operator. The characteristic operator is useful in defining Brownian motion on an m-dimensional Riemannian manifold (Mg): a Brownian motion on M is defined to be a diffusion on M whose characteristic operator in local coordinates xi, 1 ≤ i ≤ m, is given by 1/2ΔLB, where ΔLB is the Laplace-Beltrami operator given in local coordinates by

where [gij] = [gij]−1 in the sense of the inverse of a square matrix.

The resolvent operator

In general, the generator A of an Itô diffusion X is not a bounded operator. However, if a positive multiple of the identity operator I is subtracted from A then the resulting operator is invertible. The inverse of this operator can be expressed in terms of X itself using the resolvent operator.

For α > 0, the resolvent operator Rα, acting on bounded, continuous functions g : Rn → R, is defined by

It can be shown, using the Feller continuity of the diffusion X, that Rαg is itself a bounded, continuous function. Also, Rα and αI − A are mutually inverse operators:

  • if f : Rn → R is C2 with compact support, then, for all α > 0,
  • if g : Rn → R is bounded and continuous, then Rαg lies in DA and, for all α > 0,

Invariant measures

Sometimes it is necessary to find an invariant measure for an Itô diffusion X, i.e. a measure on Rn that does not change under the "flow" of X: i.e., if X0 is distributed according to such an invariant measure μ, then Xt is also distributed according to μ for any t ≥ 0. The Fokker–Planck equation offers a way to find such a measure, at least if it has a probability density function ρ: if X0 is indeed distributed according to an invariant measure μ with density ρ, then the density ρ(t, ·) of Xt does not change with t, so ρ(t, ·) = ρ, and so ρ must solve the (time-independent) partial differential equation

This illustrates one of the connections between stochastic analysis and the study of partial differential equations. Conversely, a given second-order linear partial differential equation of the form Λf = 0 may be hard to solve directly, but if Λ = A for some Itô diffusion X, and an invariant measure for X is easy to compute, then that measure's density provides a solution to the partial differential equation.

Invariant measures for gradient flows

An invariant measure is comparatively easy to compute when the process X is a stochastic gradient flow of the form

where β > 0 plays the role of an inverse temperature and Ψ : Rn → R is a scalar potential satisfying suitable smoothness and growth conditions. In this case, the Fokker–Planck equation has a unique stationary solution ρ (i.e. X has a unique invariant measure μ with density ρ) and it is given by the Gibbs distribution:

where the partition function Z is given by

Moreover, the density ρ satisfies a variational principle: it minimizes over all probability densities ρ on Rn the free energy functional F given by

where

plays the role of an energy functional, and

is the negative of the Gibbs-Boltzmann entropy functional. Even when the potential Ψ is not well-behaved enough for the partition function Z and the Gibbs measure μ to be defined, the free energy F[ρ(t, ·)] still makes sense for each time t ≥ 0, provided that the initial condition has F[ρ(0, ·)] < +∞. The free energy functional F is, in fact, a Lyapunov function for the Fokker–Planck equation: F[ρ(t, ·)] must decrease as t increases. Thus, F is an H-function for the X-dynamics.

Example

Consider the Ornstein-Uhlenbeck process X on Rn satisfying the stochastic differential equation

where m ∈ Rn and β, κ > 0 are given constants. In this case, the potential Ψ is given by

and so the invariant measure for X is a Gaussian measure with density ρ given by

.

Heuristically, for large t, Xt is approximately normally distributed with mean m and variance (βκ)−1. The expression for the variance may be interpreted as follows: large values of κ mean that the potential well Ψ has "very steep sides", so Xt is unlikely to move far from the minimum of Ψ at m; similarly, large values of β mean that the system is quite "cold" with little noise, so, again, Xt is unlikely to move far away from m.

The martingale property

In general, an Itô diffusion X is not a martingale. However, for any f ∈ C2(RnR) with compact support, the process M : [0, +∞) × Ω → R defined by

where A is the generator of X, is a martingale with respect to the natural filtration F of (Ω, Σ) by X. The proof is quite simple: it follows from the usual expression of the action of the generator on smooth enough functions f and Itô's lemma (the stochastic chain rule) that

Since Itô integrals are martingales with respect to the natural filtration Σ of (Ω, Σ) by B, for t > s,

Hence, as required,

since Ms is Fs-measurable.

Dynkin's formula

Dynkin's formula, named after Eugene Dynkin, gives the expected value of any suitably smooth statistic of an Itô diffusion X (with generator A) at a stopping time. Precisely, if τ is a stopping time with Ex[τ] < +∞, and f : Rn → R is C2 with compact support, then

Dynkin's formula can be used to calculate many useful statistics of stopping times. For example, canonical Brownian motion on the real line starting at 0 exits the interval (−R, +R) at a random time τR with expected value

Dynkin's formula provides information about the behaviour of X at a fairly general stopping time. For more information on the distribution of X at a hitting time, one can study the harmonic measure of the process.

Associated measures

The harmonic measure

In many situations, it is sufficient to know when an Itô diffusion X will first leave a measurable set H ⊆ Rn. That is, one wishes to study the first exit time

Sometimes, however, one also wishes to know the distribution of the points at which X exits the set. For example, canonical Brownian motion B on the real line starting at 0 exits the interval (−1, 1) at −1 with probability 1/2 and at 1 with probability 1/2, so Bτ(−1, 1) is uniformly distributed on the set {−1, 1}.

In general, if G is compactly embedded within Rn, then the harmonic measure (or hitting distribution) of X on the boundaryG of G is the measure μGx defined by

for x ∈ G and F ⊆ ∂G.

Returning to the earlier example of Brownian motion, one can show that if B is a Brownian motion in Rn starting at x ∈ Rn and D ⊂ Rn is an open ball centred on x, then the harmonic measure of B on ∂D is invariant under all rotations of D about x and coincides with the normalized surface measure on ∂D.

The harmonic measure satisfies an interesting mean value property: if f : Rn → R is any bounded, Borel-measurable function and φ is given by

then, for all Borel sets G ⊂⊂ H and all x ∈ G,

The mean value property is very useful in the solution of partial differential equations using stochastic processes.

The Green measure and Green formula

Let A be a partial differential operator on a domain D ⊆ Rn and let X be an Itô diffusion with A as its generator. Intuitively, the Green measure of a Borel set H is the expected length of time that X stays in H before it leaves the domain D. That is, the Green measure of X with respect to D at x, denoted G(x, ·), is defined for Borel sets H ⊆ Rn by

or for bounded, continuous functions f : D → R by

The name "Green measure" comes from the fact that if X is Brownian motion, then

where G(xy) is Green's function for the operator 1/2Δ on the domain D.

Suppose that ExD] < +∞ for all x ∈ D. Then the Green formula holds for all f ∈ C2(RnR) with compact support:

In particular, if the support of f is compactly embedded in D,

See also

References

  • Dynkin, Eugene B.; trans. J. Fabius; V. Greenberg; A. Maitra; G. Majone (1965). Markov processes. Vols. I, II. Die Grundlehren der Mathematischen Wissenschaften, Bände 121. New York: Academic Press Inc. MR0193671
  • Jordan, Richard; Kinderlehrer, David; Otto, Felix (1998). "The variational formulation of the Fokker–Planck equation". SIAM J. Math. Anal. 29 (1): 1–17 (electronic). CiteSeerX 10.1.1.6.8815. doi:10.1137/S0036141096303359. S2CID 13890235. MR1617171
  • Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications (Sixth ed.). Berlin: Springer. ISBN 3-540-04758-1. MR2001996 (See Sections 7, 8 and 9)
Read more information:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. AGEN BOCEPBerkas:TK.JPGCrazyRussianHackerInformasi pribadiLahirTaras Vladimirovich Kulakov11 Maret 1987 (umur 36)RSS Ukraina, Uni SovietNegaraRusia AmerikaTinggi202 cm (6 ft 8 in)PasanganKatherine Kulakova (m. 2018)Informasi YouTubeKa…

رام شيريرام   معلومات شخصية الميلاد العقد 1950  تشيناي  الإقامة مينلو بارك، سان ماتيو، كاليفورنيا[1]  مواطنة الهند الولايات المتحدة[1]  عدد الأولاد 2   الحياة العملية المدرسة الأم جامعة مدراس  المهنة رجل أعمال  موظف في أمازون  الثروة 1860000000 دولار أم

البازي الأشهب معلومات شخصية الزوجة اسمها غير معروف الأولاد عدة بنات الحياة العملية المهنة السرقة تهم التهم كثرة الاحتيال وشكاوى الناس العقوبة تم صلبه، لكن عفي عنه بعد ذلك تعديل مصدري - تعديل   البازي الأشهب أو البازي الأزرق هو سارق أندلسي من إشبيلية اشتهر في عهد المعتمد ب

Опис Пам'ятник Леніну на колишній території заводу «Ленінська кузня» (вул. Жилянська, 107) у Києві. Скульптори Е. Фрідман (1904 — 1982), К. Діденко (1907 — 1984) (Створено 1945 рік, встановлено у 1952 році) Джерело власне фото Час створення 22 жовтня 2009 Автор зображення NickK Ліцензія Я, власник

5825 РакуйоВідкриттяВідкривач Ацуші СуґіеМісце відкриття Обсерваторія ДінікДата відкриття 21 січня 1990ПозначенняНазвана на честь Rakuyo Tech High SchooldТимчасові позначення 1990 BR1 1958 TQ 1980 XP2Категорія малої планети Астероїд головного поясуОрбітальні характеристики[1] Епоха 23 т

Luis de Vargas por Francisco Pacheco. Libro de descripción de verdaderos retratos de ilustres y memorables varones, Madrid, Biblioteca de la Fundación Lázaro Galdiano. Luis de Vargas. Alegoría de la Inmaculada Concepción. 1561. (Altar de la Concepción de la catedral de Sevilla). Luis de Vargas (Almendralejo, 1505?- 1567) fue un pintor español del siglo XVI perteneciente a la escuela sevillana. Biografía Nacido en Almendralejo entre 1502 y 1506, se formó con su padre, el pintor Juan de V…

Szlak Architektury Drewnianej województwo małopolskie województwo podkarpackie województwo śląskie województwo świętokrzyskie pokażdyskusjaedytuj Promocja szlaku w Krakowie (2017) Szlak architektury drewnianej w województwie małopolskim, o długości ponad 1500 km[1], obejmuje 253 zespoły architektoniczne od kościołów, cerkwi, kaplic i dzwonnic po spichlerze, wiejskie chałupy i szlacheckie dwory, z czego osiem obiektów znajduje się liście światowego dziedzictwa UNESCO[2]. Sz…

De SeychellenDe Katholieke Kerk in de Seychellen is een onderdeel van de wereldwijde Katholieke Kerk, onder het geestelijk leiderschap van de paus en de curie in Rome. In 2005 waren er in de Seychellen ongeveer 69.000 (85%) katholieken.[1] Het land bestaat uit een enkel bisdom, Port Victoria o Seychelles, dat direct onder de Heilige Stoel valt. Bisschop van Port Victoria o Seychelles is Denis Wiehe. Wiehe is president van de bisschoppenconferentie van de Indische Oceaan waar verder de bi…

2017 video game 2017 video gameHollow KnightDeveloper(s)Team CherryPublisher(s)Team CherryDesigner(s)Ari GibsonWilliam PellenProgrammer(s)William PellenDavid KaziArtist(s)Ari GibsonComposer(s)Christopher LarkinEngineUnityPlatform(s)WindowsLinuxmacOSNintendo SwitchPlayStation 4Xbox OneReleaseWindows24 February 2017Linux, macOS11 April 2017Nintendo Switch12 June 2018PlayStation 4, Xbox One25 September 2018Genre(s)MetroidvaniaMode(s)Single-player Hollow Knight is a 2017 Metroidvania video game deve…

Slovak football manager Karol Bučko Managerial careerYears Team1951–1952 Sokol NV Bratislava Slávia Bratislava TTS Trenčín1959–1963 FC Nitra Inter Bratislava VSS Košice1969–1972 SK Brann1972 Banik Ostrava Karol Bučko is a Slovak former football manager. He coached Sokol NV Bratislava, Slávia Bratislava, TTS Trenčín, FC Nitra,[1] Inter Bratislava, Banik Ostrava and VSS Košice.[2] References ^ FC Nitra : SPLASH. Fcnitra.sk. Archived from the original on 2013-10…

Historic district in Delaware, United States Not to be confused with Historic Centre of Odesa. United States historic placeOdessa Historic DistrictU.S. National Register of Historic PlacesU.S. Historic district Houses on High Street in 1958Show map of DelawareShow map of the United StatesLocationBounded roughly by Appoquinimink Creek on the southeast, High St. on the northeast, 4th St. on the northwest, and Main St. on the southwest, Odessa, DelawareCoordinates39°27′14″N 75°39′23″W…

Créteil - Université Estação Créteil - UniversitéUm MF 77 chega em Créteil - Université. Uso atual Estação de metropolitano Administração RATP Metrô de Paris Linhas Linha 8 Código 2506 Tipo de estação Subterrânea Plataforma 1 Informações históricas Inauguração 10 de setembro de 1974 Próxima estação Sentido Balard Sentido Pointe du Lac Créteil - L'Échat Créteil - Préfecture Créteil - Université Créteil - Université é uma estação da linha 8 do Metrô de Pa…

Erick ThohirMenteri Badan Usaha Milik Negara Indonesia ke-9PetahanaMulai menjabat 23 Oktober 2019PresidenJoko WidodoWakilKartika Wirjoatmodjo (2019–)Budi G. Sadikin (2019–2020)Pahala Mansury (2020–2023)Rosan Roeslani (2023)PendahuluRini SoemarnoKetua Umum PSSI ke-18PetahanaMulai menjabat 16 Februari 2023WakilZainudin AmaliRatu TishaPendahuluMochamad IriawanKetua Umum Komite Olimpiade Indonesia ke-2Masa jabatan31 Oktober 2015 – 9 Oktober 2019PendahuluRita Subo…

Universitas Atma Jaya MakassarDidirikan9 Juni 1989LokasiMakassarUniversitas Atma Jaya Makassar adalah sebuah perguruan tinggi swasta di Makassar yang didirikan oleh Yayasan Perguruan Tinggi Atma Jaya Makassar pada tanggal 9 Juni 1989. Universitas Atma Jaya Makassar juga merupakan anggota APTIK (Asosiasi Perguruan Tinggi Katolik) [1]. Sejarah Universitas Atma Jaya Makassar sebagai lembaga pendidikan tinggi yang dikelola oleh Yayasan Perguruan Tinggi Atma Jaya, didirikan dengan Akta Notaris Joost …

Black & white portrait, head & shoulder image of young Doris Durlacher Miriam Dorothy Durlacher, more commonly known as Doris Durlacher, (1870–1942) was a nurse and midwife in Toodyay, Western Australia. Early life Durlacher was born on 14 March 1870[1]: 925  at White Peak Station near Geraldton, to Deborah Wilberforce Durlacher (the daughter of Michael Clarkson). Doris's father, Alfred Durlacher, had committed suicide four months earlier.[1]: …

Payasam (pudding) of Kerala, India Chakka PradhamanChakka prathamanTypePuddingCourseDessertPlace of originIndiaRegion or stateKeralaMain ingredientsJackfruit, jaggery or sugar, ghee Chakka prathaman is a traditional payasam (pudding) of Kerala, India. Typical preparation The main ingredients of chakka prathaman are chakka varattiyathu and jaggery. Chakka varattiyathu is made by cooking finely chopped pieces of Chakka Chula (the edible yellow part of jackfruit) with ghee and jaggery (or sugar) at…

For other books, see Mahabharata (disambiguation) § Literature. Mahabharata First editionAuthorC. RajagopalachariCountryIndiaLanguageEnglishGenreMythologyPublisherBharatiya Vidya BhavanPublication date1958Media typePrintISBN978-81-7276-368-8OCLC48972632 Mahabharata is a historical book retold by C. Rajagopalachari. It was first published by Bharatiya Vidya Bhavan in 1958.[1] This book is an abridged English retelling of Vyasa's Mahabharata.[2] Rajaji considered this bo…

For other venues with the same name, see Drake Stadium. Haskins FieldFormer namesHaskins Field (1904–1909)OwnerDrake UniversityOperatorDrake UniversityCapacity12,000 (1925)2,500 (1904)SurfaceGrassConstructionOpened1904Closed1925Demolished1925TenantsDrake football (NCAA) (1904–1924)Drake Relays (1910–1925) Drake Stadium was a stadium in Des Moines, Iowa. Originally named Haskins Field, for the son of a primary donor, stadium opened on October 8, 1904 with the University of Iowa winning 17…

この項目には性的な表現や記述が含まれます。免責事項もお読みください。 OPPAI グループ WILL主なレーベル OPPAIOPPAI SPECIALジャンル 巨乳DVD発売日 毎月19日創立 2008年公式サイト OPPAI公式サイトテンプレートを表示 OPPAI[おっぱい]は、日本のアダルトビデオメーカー。 本社は東京都渋谷区恵比寿4-5-28 恵比寿ガーデン605号 概要 OPPAIは2008年に創立したアウトビジョン(北都)グ…

Bias within the mass media This article needs to be updated. Please help update this article to reflect recent events or newly available information. (June 2023) Journalism News Writing style Ethics code of ethics Objectivity News values Attribution Defamation Sensationalism Editorial independence Journalism school Index of journalism articles Areas Arts Business Data Entertainment Environment Fashion Medicine Music Politics Science Sports Technology Traffic Weather World Genres Advocacy Analyti…

Kembali kehalaman sebelumnya