In 1962, he proved that 78,557 is a Sierpinski number; he showed that, when k = 78,557, all numbers of the form k2n + 1 have a factor in the covering set {3, 5, 7, 13, 19, 37, 73}. Five years later, he and Sierpiński conjectured that 78,557 is the smallest Sierpinski number, and thus the answer to the Sierpinski problem. A distributed computing project, Seventeen or Bust, is devoted to finding a computational proof of this statement.
In 1964, Selfridge and Alexander Hurwitz proved that the 14th Fermat number was composite.
[5]
However, their proof did not provide a factor. It was not until 2010 that the first factor of the 14th Fermat number was found.
[6][7]
Together with Paul Erdős, Selfridge solved a 150-year-old problem, proving that the product of consecutive numbers is never a power.[9] It took them many years to find the proof, and John made extensive use of computers, but the final version of the proof requires only a modest amount of computation, namely evaluating an easily computed function f(n) for 30,000 consecutive values of n. Selfridge suffered from writer's block and thanked "R. B. Eggleton for reorganizing and writing the paper in its final form".[9]
Selfridge also developed the Selfridge–Conway discrete procedure for creating an envy-free cake-cutting among three people. Selfridge developed this in 1960, and John Conway independently discovered it in 1993. Neither of them ever published the result, but Richard Guy told many people Selfridge's solution in the 1960s, and it was eventually attributed to the two of them in a number of books and articles.[10]
Selfridge's conjecture about Fermat numbers
Selfridge made the following conjecture about the Fermat numbersFn = 22n + 1 . Let g(n) be the number of distinct prime factors of Fn (sequence A046052 in the OEIS). As to 2024, g(n) is known only up to n = 11, and it is monotonic. Selfridge conjectured that contrary to appearances, g(n) is not monotonic. In support of his conjecture he showed a sufficient (but not necessary) condition for its truth is the existence of another Fermat prime beyond the five known (3, 5, 17, 257, 65537).[11]
Let p be an odd number, with p ≡ ± 2 (mod 5). Selfridge conjectured that if
2p−1 ≡ 1 (mod p) and at the same time
fp+1 ≡ 0 (mod p),
where fk is the kth Fibonacci number, then p is a prime number, and he offered $500 for an example disproving this. He also offered $20 for a proof that the conjecture was true. The Number Theory Foundation will now cover this prize. An example will actually yield you $620 because Samuel Wagstaff offers $100 for an example or a proof, and Carl Pomerance offers $20 for an example and $500 for a proof. Selfridge requires that a factorization be supplied, but Pomerance does not. The related test that fp−1 ≡ 0 (mod p) for p ≡ ±1 (mod 5) is false and has e.g. a 6-digit counterexample.[12][13] The smallest counterexample for +1 (mod 5) is 6601 = 7 × 23 × 41 and the smallest for −1 (mod 5) is 30889 = 17 × 23 × 79. It should be known that a heuristic by Pomerance may show this conjecture is false (and therefore, a counterexample should exist).
^Brams, Steven J.; Taylor, Alan D. (1996). Fair Division: From cake-cutting to dispute resolution. Cambridge University Press. pp. 116–120. ISBN0521556449.
^Prime Numbers: A Computational Perspective, Richard Crandall and Carl Pomerance, Second edition, Springer, 2011 Look up Selfridge's Conjecture in the Index.
Eggan, L. C.; Eggan, Peter C.; Selfridge, J. L. (1982). "Polygonal products of polygonal numbers and the Pell equation". Fibonacci Q.20 (1): 24–28. MR0660755.
Erdos, P; Selfridge, J. L. (1982). "Another property of 239 and some related questions". Congr. Numer.: 243–257. MR0681710.
Trench, William F.; Rodriguez, R. S.; Sherwood, H.; Reznick, Bruce A.; Rubel, Lee A.; Golomb, Solomon W.; Kinnon, Nick M.; Erdos, Paul; Selfridge, John (1988). "Problems and Solutions: Elementary Problems: E3243–E3248". Am. Math. Mon. 95 (1): 50–51. doi:10.2307/2323449. JSTOR2323449. MR1541238.
Bateman, P. T.; Selfridge, J. L.; Wagstaff, S. S. (1989). "The New Mersenne conjecture". Am. Math. Mon. 96 (2): 125–128. doi:10.2307/2323195. JSTOR2323195. MR0992073.
Lacampagne, C. B.; Nicol, C. A.; Selfridge, J. L. (1990). "Sets with nonsquarefree sums". Number Theory. de Gruyter. pp. 299–311.
Lin, Cantian; Selfridge, J. L.; Shiue, Peter Jau-shyong (1995). "A note on periodic complementary binary sequences". J. Comb. Math. Comb. Comput. 19: 225–29. MR1358509.
Blecksmith, Richard; McCallum, Michael; Selfridge, J. L. (1998). "3-smooth representations of integers". Am. Math. Mon. 105 (6): 529–543. doi:10.2307/2589404. JSTOR2589404. MR1626189.