Share to: share facebook share twitter share wa share telegram print page

K-minimum spanning tree

An example of an undirected graph with edge costs
The 4-MST of
The 6-MST of

The k-minimum spanning tree problem, studied in theoretical computer science, asks for a tree of minimum cost that has exactly k vertices and forms a subgraph of a larger graph. It is also called the k-MST or edge-weighted k-cardinality tree. Finding this tree is NP-hard, but it can be approximated to within a constant approximation ratio in polynomial time.

Problem statement

The input to the problem consists of an undirected graph with weights on its edges, and a number k. The output is a tree with k vertices and k − 1 edges, with all of the edges of the output tree belonging to the input graph. The cost of the output is the sum of the weights of its edges, and the goal is to find the tree that has minimum cost. The problem was formulated by Lozovanu & Zelikovsky (1993)[1] and by Ravi et al. (1996).

Ravi et al. also considered a geometric version of the problem, which can be seen as a special case of the graph problem. In the geometric k-minimum spanning tree problem, the input is a set of points in the plane. Again, the output should be a tree with k of the points as its vertices, minimizing the total Euclidean length of its edges. That is, it is a graph k-minimum spanning tree on a complete graph with Euclidean distances as weights.[2]

Computational complexity

When k is a fixed constant, the k-minimum spanning tree problem can be solved in polynomial time by a brute-force search algorithm that tries all k-tuples of vertices. However, for variable k, the k-minimum spanning tree problem has been shown to be NP-hard by a reduction from the Steiner tree problem.[1][2]

The reduction takes as input an instance of the Steiner tree problem: a weighted graph, with a subset of its vertices selected as terminals. The goal of the Steiner tree problem is to connect these terminals by a tree whose weight is as small as possible. To transform this problem into an instance of the k-minimum spanning tree problem, Ravi et al. (1996) attach to each terminal a tree of zero-weight edges with a large number t of vertices per tree. (For a graph with n vertices and r terminals, they use t = nr − 1 added vertices per tree.) Then, they ask for the k-minimum spanning tree in this augmented graph with k = rt. The only way to include this many vertices in a k-spanning tree is to use at least one vertex from each added tree, for there are not enough vertices remaining if even one of the added trees is missed. However, for this choice of k, it is possible for k-spanning tree to include only as few edges of the original graph as are needed to connect all the terminals. Therefore, the k-minimum spanning tree must be formed by combining the optimal Steiner tree with enough of the zero-weight edges of the added trees to make the total tree size large enough.[2]

Even for a graph whose edge weights belong to the set {1, 2, 3}, testing whether the optimal solution value is less than a given threshold is NP-complete. It remains NP-complete for planar graphs. The geometric version of the problem is also NP-hard, but not known to belong to NP, because of the difficulty of comparing sums of square roots; instead it lies in the class of problems reducible to the existential theory of the reals.[2]

The k-minimum spanning tree may be found in polynomial time for graphs of bounded treewidth, and for graphs with only two distinct edge weights.[2]

Approximation algorithms

Because of the high computational complexity of finding an optimal solution to the k-minimum spanning tree, much of the research on the problem has instead concentrated on approximation algorithms for the problem. The goal of such algorithms is to find an approximate solution in polynomial time with a small approximation ratio. The approximation ratio is defined as the ratio of the computed solution length to the optimal length for a worst-case instance, one that maximizes this ratio. Because the NP-hardness reduction for the k-minimum spanning tree problem preserves the weight of all solutions, it also preserves the hardness of approximation of the problem. In particular, because the Steiner tree problem is NP-hard to approximate to an approximation ratio better than 96/95,[3] the same is true for the k-minimum spanning tree problem.

The best approximation known for the general problem achieves an approximation ratio of 2, and is by Garg (2005).[4] This approximation relies heavily on the primal-dual schema of Goemans & Williamson (1992).[5] When the input consists of points in the Euclidean plane (any two of which can be connected in the tree with cost equal to their distance) there exists a polynomial time approximation scheme devised by Arora (1998).[6]

References

  1. ^ a b Lozovanu, D.; Zelikovsky, A. (1993), "Minimal and bounded tree problems", Tezele Congresului XVIII al Academiei Romano-Americane, Kishniev, p. 25. As cited by Ravi et al. (1996).
  2. ^ a b c d e Ravi, R.; Sundaram, R.; Marathe, M.; Rosenkrantz, D.; Ravi, S. (1996), "Spanning trees short or small", SIAM Journal on Discrete Mathematics, 9 (2): 178–200, arXiv:math/9409222, doi:10.1137/S0895480194266331, S2CID 8253322. A preliminary version of this work was presented earlier, at the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, 1994, pp. 546–555.
  3. ^ Chlebík, Miroslav; Chlebíková, Janka (2008), "The Steiner tree problem on graphs: Inapproximability results", Theoretical Computer Science, 406 (3): 207–214, doi:10.1016/j.tcs.2008.06.046.
  4. ^ Garg, Naveen (2005), "Saving an epsilon: a 2-approximation for the k-MST problem in graphs", Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 396–402, doi:10.1145/1060590.1060650, S2CID 17089806.
  5. ^ Goemans, M.; Williamson, P. (1992), "A general approximation technique for constrained forest problems", SIAM Journal on Computing, 24 (2): 296–317, CiteSeerX 10.1.1.55.7342, doi:10.1137/S0097539793242618, S2CID 1796896.
  6. ^ Arora, Sanjeev (1998), "Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems", Journal of the ACM, 45 (5): 753–782, doi:10.1145/290179.290180, S2CID 3023351.

Read other articles:

العلاقات المغربية الغرينادية المغرب غرينادا   المغرب   غرينادا تعديل مصدري - تعديل   العلاقات المغربية الغرينادية هي العلاقات الثنائية التي تجمع بين المغرب وغرينادا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا�...

 

Usbekistan Kapitän Petr Lebed Aktuelles ITF-Ranking 22 Statistik Erste Teilnahme 1994 Davis-Cup-Teilnahmen 19 Bestes Ergebnis Play-offs zur Weltgruppe(1998–2001, 2009) Ewige Bilanz 30:17 Erfolgreichste Spieler Meiste Siege gesamt Oleg Ogorodov (53) Meiste Einzelsiege Oleg Ogorodov (36) Meiste Doppelsiege Oleg Ogorodov (17) Bestes Doppel Dmitriy Tomashevich / Oleg Ogorodov (12) Meiste Teilnahmen Oleg Ogorodov (29) Meiste Jahre Vadim Kutsenko (10) Letzte Aktualisierung der Infobox: 5. März ...

 

Hồi giáo tại Châu Á bắt đầu vào Thế kỷ thứ 7 (VII) bởi nhà tiên tri Muhammad. Một số tín đồ của đạo Hồi đã sống ở châu Á và đặc biệt là Tây Á và Nam Á kể từ khi bắt đầu lịch sử Hồi giáo. Hồi giáo được cho là đã đến Manipur (Đông Bắc Ấn Độ) vào năm 615 sau Công nguyên thông qua Chittagong, một phần của bờ biển ngày nay Bangladesh trong thời đại của con đường tơ lụa (cả...

川崎市市民ミュージアムKAWASAKI CITY MUSEUM 外観 川崎市市民ミュージアム 神奈川県内での位置施設情報正式名称 川崎市市民ミュージアム専門分野 博物館・美術館館長 蛭川泰行(2023年 - )学芸員 常勤14人(2023年〈令和5年〉度末現在)事業主体 川崎市建物設計 菊竹清訓延床面積 19,542m2開館 1988年11月[1]所在地 〒211-0052神奈川県川崎市中原区等々力1-2位置 北緯35度35分18.9

 

Max Westerman Max Westerman als presentator van TEDx Rotterdam Geboren 3 januari 1958 Geboorteplaats Arnhem Land  Nederland Beroep Journalist, TV-presentator, auteur Jaren actief 1989− Bekend van RTL Nieuws Website (en) IMDb-profiel Portaal    Media Max Westerman (Arnhem, 3 januari 1958) is een Nederlandse journalist die als correspondent voor het RTL Nieuws vanuit New York verslag deed van de gebeurtenissen in de Verenigde Staten. Leven en loopbaan Westerman is het jongste k...

 

Maéva Clemaron (2014) Maéva Clemaron (* 10. November 1992 in Vienne) ist eine französische Fußballspielerin, die zwar schon in sehr jungen Jahren in Frankreichs oberster Frauenliga eingesetzt wurde, aber erst relativ spät auch zur A-Nationalspielerin wurde. Inhaltsverzeichnis 1 Vereinskarriere 1.1 Stationen 2 Nationalspielerin 3 Palmarès 4 Weblinks 5 Anmerkungen und Nachweise Vereinskarriere Maéva Clemaron begann bereits als Siebenjährige in einer gemischten Mannschaft der AS Cheyssie...

العلاقات الأوزبكستانية البوليفية أوزبكستان بوليفيا   أوزبكستان   بوليفيا تعديل مصدري - تعديل   العلاقات الأوزبكستانية البوليفية هي العلاقات الثنائية التي تجمع بين أوزبكستان وبوليفيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية ل...

 

Richard Borek (* 30. Juni 1874 in Braunschweig; † 13. Mai 1947 ebenda) war ein deutscher Briefmarkenhändler, Drucker, Kaufmann und Verleger. Er gründete die Braunschweiger Unternehmensgruppe Richard Borek. Inhaltsverzeichnis 1 Leben 2 Briefmarkenhandel und Druckerei 3 Literatur 4 Weblinks 5 Einzelnachweise Leben Pelzhandlung Anton BorekHaus Richard Borek am Dom Borek wurde als Sohn des Kürschners Anton Borek (1841–1894) und dessen Frau Emma, geborene von Walbeck-Lambrecht (1845–1923)...

 

American politician Frank Charles BunnellMember of the U.S. House of Representativesfrom PennsylvaniaIn officeMarch 4, 1885 – March 3, 1889Preceded byGeorge A. PostSucceeded byMyron B. WrightConstituency15th districtIn officeDecember 24, 1872 – March 3, 1873Preceded byUlysses MercurSucceeded byJames D. StrawbridgeConstituency13th district Personal detailsBorn(1842-03-19)March 19, 1842Washington Township, Wyoming County, PennsylvaniaDiedSeptember 11, 1911(1911...

The Miniature Paul Ion Trap and board-level RF electronics A miniature mass spectrometer (MMS) is a type of mass spectrometer (MS) which has small size and weight and can be understood as a portable or handheld device. Current lab-scale mass spectrometers however, usually weigh hundreds of pounds and can cost on the range from thousands to millions of dollars. One purpose of producing MMS is for in situ analysis. This in situ analysis can lead to much simpler mass spectrometer operation such ...

 

To edit, please log in.Last edited:Last edited by:02:38, 25 January 2021 (UTC)Fuzheado (talk · contribs) Editing by unregistered users from your shared IP address or address range may be currently disabled due to abuse. However, you are still able to edit if you sign in with an account. If you are currently blocked from creating an account, and cannot create one elsewhere in the foreseeable future, you may follow the instructions at Wikipedia:Request an account to request that volunteers c...

 

Sporting event delegationTurkey at the2006 Winter OlympicsIOC codeTURNOCTurkish National Olympic CommitteeWebsiteolimpiyat.org.tr (in English and Turkish)in TurinCompetitors6 (3 men, 3 women) in 3 sportsFlag bearers Tuğba Karademir (opening) Sebahattin Oglago (closing)[1][2]Officials12Medals Gold 0 Silver 0 Bronze 0 Total 0 Winter Olympics appearances (overview)193619481952195619601964196819721976198019841988199219941998200220062010201420182022 Turkey competed at th...

This article is about the album. For the similarly-titled song from it, see Fuck It (I Don't Want You Back). 2004 studio album by EamonI Don't Want You BackStudio album by EamonReleasedFebruary 17, 2004 (2004-02-17)Recorded2003StudioFirst Priority LabsBattery Studios (New York City)GenreR&B[1]Length48:55LabelJiveProducerMilk DeeRoy Royalty HamiltonEamon chronology I Don't Want You Back(2004) Love & Pain(2006) Singles from I Don't Want You Back Fuck It (I...

 

Chilean politician Errázuriz as a senator (1994-2002) Francisco Javier Errázuriz Talavera (born Santiago May 7, 1942) is a Chilean businessman and a former senator and presidential candidate of the Progressive Union of the Centrist Center. He is commonly known as Fra-Fra because he was a stutterer during his childhood. Errázuriz Talavera is of Basque descent.[1] Life He was born in Santiago, son of former senator Ladislao Errázuriz and Amelia Talavera. He studied in the Liceo Alem...

 

Dutch volleyball player Robbert AndringaPersonal informationNationalityDutchBorn (1990-04-28) 28 April 1990 (age 33)Assen, NetherlandsHeight1.91 m (6 ft 3 in)Weight86 kg (190 lb)Spike330 cm (130 in)Volleyball informationPositionOutside hitter / LiberoCurrent clubGas Sales PiacenzaCareer YearsTeams 2008–2013 2013–2016 2016–2017 2017–2023 2023–Lycurgus Groningen Volley Aalst Stade Poitevin Poitiers AZS Olsztyn Gas Sales PiacenzaNational team 201...

Bahasa Ojibwe Anishinaabemowin, ᐊᓂᔑᓈᐯᒧᐎᓐ Pengucapan[anɪʃɪnaːpeːmowɪn]Dituturkan diKanada, Amerika SerikatWilayahKanada: Quebec, Ontario, Manitoba, Saskatchewan, sejumlah orang di Alberta, British Columbia; Amerika Serikat: Michigan, Wisconsin, Minnesota, sejumlah orang di North Dakota, MontanaEtnisSuku OjibwePenutur56.531 (47.740 di Kanada; 8.791 di Amerika Serikat)Rumpun bahasaAlfgik AlgonquianOjibwe–PotawatomiOjibwe Sistem penulisanAlfabet Latin, beberapa ortogr...

 

Australian female racing driver Molly TaylorBorn (1988-05-06) 6 May 1988 (age 35)Sydney, New South Wales, AustraliaNationality Australian[1]CitizenshipBritish and AustralianAlma materUniversity of SydneyOccupationRally driverYears active2010-presentParent(s)Mark TaylorCoral Taylor[2]Extreme E careerDebut season2021Current teamVeloce_RacingCar number22Former teamsRosberg X RacingStarts6Championships1Wins3Best finish1st in 2021Finished last season1stPrevious serie...

 

1991 video game 1990 video gameWhomp 'Em Saiyūki World 2: Tenjōkai no MajinNorth American cover artDeveloper(s)JalecoPublisher(s)JalecoDesigner(s)Jirocho NobuComposer(s)Tsukasa TawadaPlatform(s)Nintendo Entertainment SystemReleaseJP: December 7, 1990NA: March 1991Genre(s)PlatformMode(s)Single-player Whomp 'Em, the North American version of the Japanese game Saiyūki World 2: Tenjōkai no Majin (西遊記ワールド2 天上界の魔神, lit. Saiyūki World 2: Evil Spirit of Heaven) (1990), ...

American sex offender and financier (1953–2019) Jeffrey EpsteinEpstein in 2019BornJeffrey Edward Epstein(1953-01-20)January 20, 1953Brooklyn, New York City, U.S.DiedAugust 10, 2019(2019-08-10) (aged 66)Metropolitan Correctional Center, New York, U.S.Cause of deathSuicide by hangingOccupationsFinancierbrokereducatorCriminal chargeProcuring a child for prostitution; sex traffickingPenaltyThirteen months (2008)Partner(s)Ghislaine Maxwell Jeffrey Edward Epstein (/ˈɛpstiːn/ EP-steen...

 

Comics character Dian BelmontDian from Sandman Mystery Theatre.Art by Guy Davis.Publication informationPublisherDC ComicsFirst appearanceAdventure Comics #47(February 1940)Created byGardner FoxOgden WhitneyIn-story informationTeam affiliationsJustice Society of AmericaSupporting character ofSandmanNotable aliasesSandy the Golden Girl, Woman in Evening Clothes Dian Belmont is a fictional DC Comics character, associated with the golden age Sandman, a socialite and amateur detective, she assiste...

 
Kembali kehalaman sebelumnya