Plasmodesmata (singular: plasmodesma) are microscopic channels which traverse the cell walls of plant cells[2] and some algal cells, enabling transport and communication between them. Plasmodesmata evolved independently in several lineages,[3] and species that have these structures include members of the Charophyceae, Charales, Coleochaetales and Phaeophyceae (which are all algae), as well as all embryophytes, better known as land plants.[4] Unlike animal cells, almost every plant cell is surrounded by a polysaccharidecell wall. Neighbouring plant cells are therefore separated by a pair of cell walls and the intervening middle lamella, forming an extracellular domain known as the apoplast. Although cell walls are permeable to small soluble proteins and other solutes, plasmodesmata enable direct, regulated, symplastic transport of substances between cells. There are two forms of plasmodesmata: primary plasmodesmata, which are formed during cell division, and secondary plasmodesmata, which can form between mature cells.[5]
Primary plasmodesmata are formed when fractions of the endoplasmic reticulum are trapped across the middle lamella as new cell wall are synthesized between two newly divided plant cells. These eventually become the cytoplasmic connections between cells. At the formation site, the wall is not thickened further, and depressions or thin areas known as pits are formed in the walls. Pits normally pair up between adjacent cells. Plasmodesmata can also be inserted into existing cell walls between non-dividing cells (secondary plasmodesmata).[9]
Primary plasmodesmata
The formation of primary plasmodesmata occurs during the part of the cellular division process where the endoplasmic reticulum and the new plate are fused together, this process results in the formation of a cytoplasmic pore (or cytoplasmic sleeve). The desmotubule, also known as the appressed ER, forms alongside the cortical ER. Both the appressed ER and the cortical ER are packed tightly together, thus leaving no room for any luminal space. It is proposed that the appressed ER acts as a membrane transportation route in the plasmodesmata. When filaments of the cortical ER are entangled in the formation of a new cell plate, plasmodesmata formation occurs in land plants. It is hypothesized that the appressed ER forms due to a combination of pressure from a growing cell wall and interaction from ER and PM proteins. Primary plasmodesmata are often present in areas where the cell walls appear to be thinner. This is due to the fact that as a cell wall expands, the abundance of the primary plasmodesmata decreases. In order to further expand plasmodesmal density during cell wall growth secondary plasmodesmata are produced. The process of secondary plasmodesmata formation is still to be fully understood, however various degrading enzymes and ER proteins are said to stimulate the process.[10]
Structure
Plasmodesmatal plasma membrane
A typical plant cell may have between 1,000 and 100,000 plasmodesmata connecting it with adjacent cells[11] equating to between 1 and 10 per μm2.[12][failed verification] Plasmodesmata are approximately 50–60 nm in diameter at the midpoint and are constructed of three main layers, the plasma membrane, the cytoplasmic sleeve, and the desmotubule.[11] They can transverse cell walls that are up to 90 nm thick.[12]
The plasma membrane portion of the plasmodesma is a continuous extension of the cell membrane or plasmalemma and has a similar phospholipid bilayer structure.[13]
The cytoplasmic sleeve is a fluid-filled space enclosed by the plasmalemma and is a continuous extension of the cytosol. Trafficking of molecules and ions through plasmodesmata occurs through this space. Smaller molecules (e.g. sugars and amino acids) and ions can easily pass through plasmodesmata by diffusion without the need for additional chemical energy. Larger molecules, including proteins (for example green fluorescent protein) and RNA, can also pass through the cytoplasmic sleeve diffusively.[14] Plasmodesmatal transport of some larger molecules is facilitated by mechanisms that are currently unknown. One mechanism of regulation of the permeability of plasmodesmata is the accumulation of the polysaccharidecallose around the neck region to form a collar, thereby reducing the diameter of the pore available for transport of substances.[13] Through dilation, active gating or structural remodeling the permeability of the plasmodesmata is increased. This increase in plasmodesmata pore permeability allows for larger molecules, or macromolecules, such as signaling molecules, transcription factors and RNA-protein complexes to be transported to various cellular compartments.[10]
Structure of a plasmodesmata and their location within plant cells
Plasmodesmata allow molecules to travel between plant cells through the symplastic pathway
The desmotubule is a tube of appressed (flattened) endoplasmic reticulum that runs between two adjacent cells.[15] Some molecules are known to be transported through this channel,[16] but it is not thought to be the main route for plasmodesmatal transport.
Around the desmotubule and the plasma membrane areas of an electron dense material have been seen, often joined together by spoke-like structures that seem to split the plasmodesma into smaller channels.[15] These structures may be composed of myosin[17][18][19] and actin,[18][20] which are part of the cell's cytoskeleton. If this is the case these proteins could be used in the selective transport of large molecules between the two cells.
The size of molecules that can pass through plasmodesmata is determined by the size exclusion limit. This limit is highly variable and is subject to active modification.[5] For example, MP-30 is able to increase the size exclusion limit from 700 daltons to 9400 daltons thereby aiding its movement through a plant.[22] Also, increasing calcium concentrations in the cytoplasm, either by injection or by cold-induction, has been shown to constrict the opening of surrounding plasmodesmata and limit transport.[23]
Several models for possible active transport through plasmodesmata exist. It has been suggested that such transport is mediated by interactions with proteins localized on the desmotubule, and/or by chaperones partially unfolding proteins, allowing them to fit through the narrow passage. A similar mechanism may be involved in transporting viral nucleic acids through the plasmodesmata.[24][unreliable source?]
A number of mathematical models have been suggested for estimating transport across plasmodesmata. These models have primarily treated transport as a diffusion problem with some added hindrance.[25][26][27]
Cytoskeletal components of Plasmodesmata
Plasmodesmata link almost every cell within a plant, which can cause negative effects such as the spread of viruses. In order to understand this we must first look at cytoskeletal components, such as actin microfilaments, microtubules, and myosin proteins, and how they are related to cell to cell transport. Actin microfilaments are linked to the transport of viral movement proteins to plasmodesmata which allow for cell to cell transport through the plasmodesmata. Fluorescent tagging for co-expression in tobacco leaves showed that actin filaments are responsible for transporting viral movement proteins to the plasmodesmata. When actin polymerization was blocked it caused a decrease in plasmodesmata targeting of the movement proteins in the tobacco and allowed for 10-kDa (rather than 126-kDa) components to move between tobacco mesophyll cells. This also impacted cell to cell movement of molecules within the tobacco plant.[28]
Viruses
Viruses break down actin filaments within the plasmodesmata channel in order to move within the plant. For example, when the cucumber mosaic virus (CMV) gets into plants it is able to travel through almost every cell through utilization of viral movement proteins to transport themselves through the plasmodesmata. When tobacco leaves are treated with a drug that stabilizes actin filaments, phalloidin, the cucumber mosaic virus movement proteins are unable to increase the plasmodesmata size exclusion limit (SEL).[28]
Myosin
High amounts of myosin proteins are found at the sites of plasmodesmata. These proteins are involved in directing viral cargoes to plasmodesmata. When mutant forms of myosin were tested in tobacco plants, viral protein targeting to plasmodesmata was negatively affected. Permanent binding of myosin to actin, which was induced by a drug, caused a decrease in cell to cell movement. Viruses are also able to selectively bind to myosin proteins.[28]
Microtubules
Microtubules have an important role in cell to cell transport of viral RNA. Viruses use many different methods of transporting themselves from cell to cell and one of those methods associating the N-terminal domain of its RNA to localize to plasmodesmata through microtubules. In tobacco plants injected with tobacco mosaic viruses that were kept in high temperatures there was a strong correlation between GFP-labelled TMV movement proteins and microtubules. This led to an increase in the spread of viral RNA through the tobacco.[28]
Plasmodesmata and callose
Plasmodesmata regulation and structure are regulated by a beta 1,3-glucan polymer known as callose. Callose is found in cell plates during the process of cytokinesis, but as this process reaches completion the levels of callose decrease.[citation needed] The only callose rich parts of the cell include the sections of the cell wall where plasmodesmata are present. In order to regulate what is transported through the plasmodesmata, callose must be present. Callose provides the mechanism by which plasmodesmata permeability is regulated. In order to control what is transported between different tissues, the plasmodesmata undergo several specialized conformational changes.[10]
The activity of plasmodesmata are linked to physiological and developmental processes within plants. There is a hormone signaling pathway that relays primary cellular signals via the plasmodesmata. There are also patterns of environmental, physiological, and developmental cues that show relation to plasmodesmata function. An important mechanism of plasmodesmata is the ability to gate its channels. Callose levels have been proved to be a method of changing plasmodesmata aperture size.[29] Callose deposits are found at the neck of the plasmodesmata in new cell walls that have been formed. The level of deposits at the plasmodesmata can fluctuate which shows that there are signals that trigger an accumulation of callose at the plasmodesmata and cause plasmodesmata to become gated or more open. Enzyme activities of Beta 1,3-glucan synthase and hydrolases are involved in changes in plasmodesmata cellulose level. Some extracellular signals change transcription of activities of this synthase and hydrolase. Arabidopsis thaliana has callose synthase genes that encode a catalytic subunit of B-1,3-glucan. Gain of function mutants in this gene pool show increased deposition of callose at plasmodesmata and a decrease in macromolecular trafficking as well as a defective root system during development.[28]
^ abAW Robards (1976). "Plasmodesmata in higher plants". In BES Gunning; AW Robards (eds.). Intercellular communications in plants: studies on plasmodesmata. Berlin: Springer-Verlag. pp. 15–57.
Team Colombia Información del equipo Código UCI COL País Colombia Colombia Fundación 2012 Disolución 2015 Disciplina Ciclismo en ruta Categoría Profesional Continental (2012-2015) Dirección Gerente Claudio Corti Director deportivo Valerio Tibaldi Director deportivo Oliverio Rincón Director deportivo Hernán Buenahora Director deportivo Oscar Pelliccioli Denominaciones 20122013-2015 Colombia-ColdeportesColombia Equipación Colombia (código UCI: COL) fue un equipo ciclista colombi...
Den här artikeln har skapats av Lsjbot, ett program (en robot) för automatisk redigering. (2016-05)Artikeln kan innehålla fakta- eller språkfel, eller ett märkligt urval av fakta, källor eller bilder. Mallen kan avlägsnas efter en kontroll av innehållet (vidare information) För andra betydelser, se Långön. Långön Ö Land Finland Landskap Nyland Ekonomisk region Raseborgs ekonomiska region Kommun Raseborg Havsområde Finska viken Koordinater 59°56′53″N 23°43′58″Ö&...
Опис файлу Опис файлу Опис укр. Основні одиниці SI, їх визначальні константи та взаємозв'язки між ними після змін 2018—2019 років. Див. також File:Unit relations in the old SI ru.svg, File:Unit relations in the new SI ru.svg. Джерело: Richard Davis, An introduction to the revised international system of units (SI) // IEEE Instrumentation & Measurement Magazine, vol. 22, no. 3, ...
Canadian architect Kelvin Crawford StanleyBorn(1919-10-22)October 22, 1919Calgary, AlbertaDiedDecember 19, 1995(1995-12-19) (aged 76)Sidney, British ColumbiaAlma materUniversity of Manitoba (B.Arch.)OccupationArchitectPracticeInternational StyleBuildingsParamount Theatre Kelvin Crawford Stanley was a Canadian architect based in Edmonton, Alberta from 1946 until 1964. He subsequently worked in Montreal and Ottawa in the late 1960s.[1][2][3] Life Kelvin Crawfor...
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Villanueva de Alcorón – news · newspapers · books · scholar · JSTOR (October 2012) (Learn how and when to remove this template message) Place in Castile-La Mancha, SpainVillanueva de Alcorón, SpainVillanueva de Alcorón, SpainShow map of Province of GuadalajaraVillanueva de Al...
Untuk orang lain yang bernama sama, lihat Jane Jacobs. Jane JacobsJane Jacobs tahun 1961 saat menjadi ketua kelompok kawasan Greenwich Village di New York City.LahirJane Butzner(1916-05-04)4 Mei 1916Scranton, Pennsylvania, Amerika SerikatMeninggal25 April 2006(2006-04-25) (umur 89)Toronto, Ontario, KanadaSebab meninggalStrokePendidikanlulus dari Scranton High School; dua tahun lulus sebagai sarjana Universitas ColumbiaPekerjaanwartawan, penulis, teoris urbanTempat kerjaAmerika, Arch...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2019) مايكل زاور معلومات شخصية الميلاد 27 أغسطس 1941 (82 سنة) ركلنهاوزن الطول 183 سنتيمتر الجنسية ألمانيا الوزن 77 كيلوغرام[1] الحياة العملية المهنة ص
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2015) سوزان هيوارد معلومات شخصية اسم الولادة Susan Heyward الميلاد 19 نوفمبر 1982 (41 سنة) فيلادلفيا (بنسيلفانيا) الإقامة نيويورك الجنسية الولايات المتحدة الطول 162 س
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2016. Karakteristik kawahKawah Sabine (tengah kanan) dan Ritter (kanan). Foto NASA.Koordinat1.4° U, 20.1° TDiameter30 kmKedalaman1.3 kmKolongitud340° saat Matahari terbitEponimEdward Sabinelbs Sabine adalah sebuah kawah Bulan yang berpasangan...
Kinich Ahau sebagai penguasa, Zaman Klasik Kinich Ahau (K'inich Ajaw) adalah nama Yucatec abad ke-16 dari dewa surya Maya, yang disebut sebagai Dewa G saat disebutkan dalam kodeks-kodeks. Pada Zaman Klasik, Dewa G digambarkan sebagai pria berusia menengah Daftar pustaka Boremanse, Contes et mythologie des indiens lacandons. 1986. Hellmuth, Monster und Menschen in der Maya-Kunst. 1987. Landa, see Tozzer Milbrath, Star Gods of the Maya. Stuart and Stuart, Palenque, Eternal City of the Maya. Tha...
German World War II submarine U-570 Type VIIC submarine that was captured by the British in 1941. This U-boat is almost identical to U-1207. History Nazi Germany NameU-1207 Ordered2 April 1942 BuilderF Schichau GmbH, Danzig Yard number1577 Laid down26 June 1943 Launched6 January 1944 Commissioned23 March 1944 FateScuttled on 5 May 1945 General characteristics Class and typeType VIIC submarine Displacement 769 tonnes (757 long tons) surfaced 871 t (857 long tons) submerged Length 67.10...
Incidente Lakenheath-Bentwaters[editar datos en Wikidata] El incidente Lakenheath-Bentwaters fue una serie de detecciones de radar y avistamientos de objetos voladores no identificados, ocurridos sobre bases aéreas del este de Inglaterra la noche del 13 al 14 de agosto de 1956, y presenciados por personal de la Royal Air Force (RAF) y la United States Air Force (USAF). El incidente ha ganado cierta prominencia en la literatura ufológica y en los medios de comunicación populares.[...
Nama-nama korban Bom Bali 2002, Indonesia. Nama adalah sebutan atau label yang diberikan kepada orang, tempat, produk (misalnya merek produk) dan bahkan gagasan atau konsep, yang biasanya digunakan untuk membedakan satu sama lain. Nama dapat dipakai untuk mengenali sekelompok atau hanya sebuah benda dalam konteks yang unik maupun yang diberikan. Erlangga Adit Prastyo Nama manusia umumnya terbagi kepada nama pemberian (nama depan) dan nama keluarga (marga), contohnya Ali Wijaya, di mana Ali ad...
Markup language intended for devices that implement the Wireless Application Protocol specification Evolution of mobile web standards Not to be confused with Website Meta Language. Wireless Markup Language (WML), based on XML, is an obsolete markup language intended for devices that implement the Wireless Application Protocol (WAP) specification, such as mobile phones. It provides navigational support, data input, hyperlinks, text and image presentation, and forms, much like HTML (Hypertext M...
String instrument family This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Violin octet – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this template message) Violin octetFrom left to right: Baritone violin Small bass violin Contrabass violin Tenor violin Alto violin ...
В Википедии есть статьи о других людях с такой фамилией, см. Давыдов; Давыдов, Пётр. Пётр Семёнович Давыдов Дата рождения 1900 Награды и премии Пётр Семёнович Давыдов (4 мая 1900 — 30 марта 1963, Ташкент) — русский советский актёр театра и кино. Народный артист Узбекской ССР (1...
Railway station in Taranto, Italy TarantoThe passenger building.General informationCoordinates40°28′59″N 17°13′26″E / 40.48306°N 17.22389°E / 40.48306; 17.22389Operated byTrenitaliaFerrovie del Sud Est (FSE)Line(s)Bari–Taranto (Trenitalia)Taranto–BrindisiTaranto–Reggio di CalabriaBari–Martina Franca–Taranto (FSE)Distance114.529 km (71.165 mi)from Bari CentralePlatforms10Other informationClassificationGoldHistoryOpened15 September...
Television drama about the Brontë family To Walk InvisibleDVD coverGenreHistorical dramaWritten bySally WainwrightDirected bySally WainwrightStarringFinn AtkinsRebecca CallardCharlie MurphyAdam NagaitisChloe PirrieJonathan PryceCountry of originUnited KingdomOriginal languageEnglishProductionExecutive producersFaith PenhaleSally WainwrightProducerKaren LewisRunning time120 minutesProduction companiesBBC Cymru WalesLookout PointThe Open UniversityOriginal releaseRelease 29 December ...