Share to: share facebook share twitter share wa share telegram print page

Pre-abelian category

In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.

Spelled out in more detail, this means that a category C is pre-abelian if:

  1. C is preadditive, that is enriched over the monoidal category of abelian groups (equivalently, all hom-sets in C are abelian groups and composition of morphisms is bilinear);
  2. C has all finite products (equivalently, all finite coproducts); note that because C is also preadditive, finite products are the same as finite coproducts, making them biproducts;
  3. given any morphism fA → B in C, the equaliser of f and the zero morphism from A to B exists (this is by definition the kernel of f), as does the coequaliser (this is by definition the cokernel of f).

Note that the zero morphism in item 3 can be identified as the identity element of the hom-set Hom(A,B), which is an abelian group by item 1; or as the unique morphism A → 0 → B, where 0 is a zero object, guaranteed to exist by item 2.

Examples

The original example of an additive category is the category Ab of abelian groups. Ab is preadditive because it is a closed monoidal category, the biproduct in Ab is the finite direct sum, the kernel is inclusion of the ordinary kernel from group theory and the cokernel is the quotient map onto the ordinary cokernel from group theory.

Other common examples:

These will give you an idea of what to think of; for more examples, see abelian category (every abelian category is pre-abelian).

Elementary properties

Every pre-abelian category is of course an additive category, and many basic properties of these categories are described under that subject. This article concerns itself with the properties that hold specifically because of the existence of kernels and cokernels.

Although kernels and cokernels are special kinds of equalisers and coequalisers, a pre-abelian category actually has all equalisers and coequalisers. We simply construct the equaliser of two morphisms f and g as the kernel of their difference g − f; similarly, their coequaliser is the cokernel of their difference. (The alternative term "difference kernel" for binary equalisers derives from this fact.) Since pre-abelian categories have all finite products and coproducts (the biproducts) and all binary equalisers and coequalisers (as just described), then by a general theorem of category theory, they have all finite limits and colimits. That is, pre-abelian categories are finitely complete.

The existence of both kernels and cokernels gives a notion of image and coimage. We can define these as

im f := ker coker f;
coim f := coker ker f.

That is, the image is the kernel of the cokernel, and the coimage is the cokernel of the kernel.

Note that this notion of image may not correspond to the usual notion of image, or range, of a function, even assuming that the morphisms in the category are functions. For example, in the category of topological abelian groups, the image of a morphism actually corresponds to the inclusion of the closure of the range of the function. For this reason, people will often distinguish the meanings of the two terms in this context, using "image" for the abstract categorical concept and "range" for the elementary set-theoretic concept.

In many common situations, such as the category of sets, where images and coimages exist, their objects are isomorphic. Put more precisely, we have a factorisation of fA → B as

A → C → I → B,

where the morphism on the left is the coimage, the morphism on the right is the image, and the morphism in the middle (called the parallel of f) is an isomorphism.

In a pre-abelian category, this is not necessarily true. The factorisation shown above does always exist, but the parallel might not be an isomorphism. In fact, the parallel of f is an isomorphism for every morphism f if and only if the pre-abelian category is an abelian category. An example of a non-abelian, pre-abelian category is, once again, the category of topological abelian groups. As remarked, the image is the inclusion of the closure of the range; however, the coimage is a quotient map onto the range itself. Thus, the parallel is the inclusion of the range into its closure, which is not an isomorphism unless the range was already closed.

Exact functors

Recall that all finite limits and colimits exist in a pre-abelian category. In general category theory, a functor is called left exact if it preserves all finite limits and right exact if it preserves all finite colimits. (A functor is simply exact if it's both left exact and right exact.)

In a pre-abelian category, exact functors can be described in particularly simple terms. First, recall that an additive functor is a functor FC → D between preadditive categories that acts as a group homomorphism on each hom-set. Then it turns out that a functor between pre-abelian categories is left exact if and only if it is additive and preserves all kernels, and it's right exact if and only if it's additive and preserves all cokernels.

Note that an exact functor, because it preserves both kernels and cokernels, preserves all images and coimages. Exact functors are most useful in the study of abelian categories, where they can be applied to exact sequences.

Maximal exact structure

On every pre-abelian category there exists an exact structure that is maximal in the sense that it contains every other exact structure. The exact structure consists of precisely those kernel-cokernel pairs where is a semi-stable kernel and is a semi-stable cokernel.[1] Here, is a semi-stable kernel if it is a kernel and for each morphism in the pushout diagram

the morphism is again a kernel. is a semi-stable cokernel if it is a cokernel and for every morphism in the pullback diagram

the morphism is again a cokernel.

A pre-abelian category is quasi-abelian if and only if all kernel-cokernel pairs form an exact structure. An example for which this is not the case is the category of (Hausdorff) bornological spaces.[2]

The result is also valid for additive categories that are not pre-abelian but Karoubian.[3]

Special cases

  • An abelian category is a pre-abelian category such that every monomorphism and epimorphism is normal.
  • A quasi-abelian category is a pre-abelian category in which kernels are stable under pushouts and cokernels are stable under pullbacks.
  • A semi-abelian category is a pre-abelian category in which for each morphism the induced morphism is always a monomorphism and an epimorphism.

The pre-abelian categories most commonly studied are in fact abelian categories; for example, Ab is an abelian category. Pre-abelian categories that are not abelian appear for instance in functional analysis.

Citations

  1. ^ Sieg et al., 2011, p. 2096.
  2. ^ Sieg et al., 2011, p. 2099.
  3. ^ Crivei, 2012, p. 445.

References

  • Nicolae Popescu; 1973; Abelian Categories with Applications to Rings and Modules; Academic Press, Inc.; out of print
  • Dennis Sieg and Sven-Ake Wegner, Maximal exact structures on additive categories, Math. Nachr. 284 (2011), 2093–2100.
  • Septimu Crivei, Maximal exact structures on additive categories revisited, Math. Nachr. 285 (2012), 440–446.

Read other articles:

بندر بن سعود بن عبد العزيز آل سعود معلومات شخصية الميلاد 2 يناير 1926(1926-01-02)الرياض، مملكة الحجاز ونجد وملحقاتها الوفاة 17 مارس 2016 (90 سنة)مدريد،  إسبانيا مكان الدفن مقبرة العود الجنسية سعودي الديانة الإسلام الزوجة الأميرة منيرة بنت ذعار بن عبد العزيز بن تركي آل سعود الأميرة مو

 

Uma dos autorretratos disputados, tirados pela macaca As selfies da macaca são uma série de autorretratos tiradas por uma macaca da espécie Macaca nigra usando o equipamento do fotógrafo natural britânico David Slater. O hospedamento de tais fotos no Wikimedia Commons foi o estopim para uma disputa e um mais amplo debate sobre a posse de diretos de autor em obras feitas por animais não humanos. A reivindicação de direitos autorais de Slater foi disputada por acadêmicos e várias orga...

 

село Медвідка Церква Параскеви ВеликомучениціЦерква Параскеви Великомучениці Країна  Україна Область Вінницька область Район Вінницький район Громада Стрижавська селищна громада Код КАТОТТГ UA05020230050035361 Основні дані Засноване 1600 Населення 400 Площа 2,001 км² Густота...

This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (October 2023) Jacob ben Jeremiah Mattithiah ha-Levi (Hebrew: יעקב בן ירמיהו מתתיהו הלוי; fl. 17th century) was a German translator. He rendered Abraham Jagel's Leḳaḥ Ṭov into Yiddish (Amsterdam, 1675; Wilmersdorf, 1714; Jesnitz, 1719), as well as the Sefer ha-Yashar, under the title Tam ve-Yashar (Fran...

 

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Stams (Begriffsklärung) aufgeführt. Stams Wappen Österreichkarte Stams (Österreich) Basisdaten Staat: Österreich Bundesland: Tirol Politischer Bezirk: Imst Kfz-Kennzeichen: IM Fläche: 33,56 km² Koordinaten: 47° 17′ N, 10° 59′ O47.27638888888910.983333333333672Koordinaten: 47° 16′ 35″ N, 10° 59′ 0″ O Höhe: 672 m ü. A. Einwohner:...

 

American sitcom For the ABC talk show of the same name, see The Joey Bishop Show (talk show). The Joey Bishop ShowJoey Bishop and Abby Dalton (1964)GenreSitcomCreated byDanny ThomasLouis F. EdelmanWritten byHarry CraneStan DrebenFred S. FoxFred FreemanIrving ElinsonGarry MarshallDirected byMel FerberJames V. KernJerry ParisStarringJoey BishopAbby Dalton (seasons 2 – 4)Theme music composerVincent Youmans (1961–62)Irving Caesar (1961–62)Jimmy Van Heusen (1962–65)Sammy Cahn (1962–65)Op...

Hijiki Klasifikasi ilmiah (tanpa takson): SAR Superfilum: Heterokonta Kelas: Phaeophyceae Ordo: Fucales Famili: Sargassaceae Genus: Sargassum Spesies: S. fusiforme Nama binomial Sargassum fusiforme(Harv.) Setch., 1931 Hijiki (ヒジキ, 鹿尾菜 or 羊栖菜code: ja is deprecated , hijiki) (ヒジキ, 鹿尾菜 or 羊栖菜, hijiki?) (Sargassum fusiforme, syn. Hizikia fusiformis) adalah rumput laut berwarna cokelat yang tumbuh liar di garis pantai berbatu sekitar Jepang, Korea, dan Cina...

 

This is a list of National Monuments in Colombia. Amazonas Mirití-Paraná Cahuinarí National Park Leticia Amacayacu National Park Antioquia Abejorral Historical center of Abejorral Amagá Salinas station Minas railway station Nicanor Restrepo railway station Quiebra railway station The Forge of Amagá Amagá (Camilo Restrepo) Camilo Restrepo railway station Amagá (Piedecuesta) Piedecuesta railway station Angelópolis Angelópolis railway station Barbosa Barbosa railway station Barbosa (El ...

 

Rapid transit system in Ahmedabad and Gandhinagar, Gujarat, India Ahmedabad MetroAhmedabad metro trainOverviewNative nameઅમદાવાદ મેટ્રોOwnerGujarat Metro Rail Corporation LimitedArea servedAhmedabadGandhinagar Future destinations: GIFT City[1]Transit typeRapid transitNumber of lines2 (Phase-1)[2]2 (Phase-2)Line numberFully operational Blue LinePartially Operational Red Line Number of stations29 (Operational)32 (Phase-1)22 (Phase-2)Daily ridership51,00...

French football club Football clubUS AlençonFull nameUnion Sportive Alençonnaise 61Founded1916GroundStade Jacques Fould,AlençonCapacity1,500ChairmanChristian LairManagerChristophe FerronLeagueNational 3 Group F2022–23National 3 Group J, 6th Home colours Union Sportive Alençonnaise 61 is a French association football club founded in 1916. They are based in the town of Alençon and their home stadium is the Stade Jacques Fould, which has a capacity of 1,500 spectators. As of the 2018–19...

 

Overview of the role and impact of Islam in Pakistan Pakistani Muslims پاکستانی مسلمانEid Prayers at the Badshahi Mosque in LahoreTotal populationc. 242.5 Million (2023 Census estimation)[1][2][3] (97% of the population) Regions with significant populationsThroughout PakistanReligionsMajority: 90% Sunni Muslims, Minority: 10% Shia Muslims[4] LanguagesLiturgicalQuranic Arabic[5] CommonUrdu, Punjabi, Pashto, Sindhi, Saraiki, Balochi, K...

 

Políptico Virgen con el Niño y Santos por Duccio, siglo XIV A lo largo de la historia, la mariología católica se ha visto influida por una serie de santos que han atestiguado el papel central de María en el plan de salvación de Dios. El análisis de los primeros Padres de la Iglesia sigue reflejándose en las encíclicas modernas. Ireneo defendió enérgicamente el título de Theotokos o Madre de Dios. Las opiniones de Antonio de Padua, Roberto Belarmino y otros apoyaron la doctrina de ...

City in Texas, United StatesHaskell, TexasCityDowntown HaskellLocation of Haskell, TexasCoordinates: 33°9′37″N 99°44′4″W / 33.16028°N 99.73444°W / 33.16028; -99.73444CountryUnited StatesStateTexasCountyHaskellArea[1] • Total3.60 sq mi (9.32 km2) • Land3.60 sq mi (9.32 km2) • Water0.00 sq mi (0.00 km2)Elevation1,581 ft (482 m)Population (2010) •...

 

Brazilian footballer In this Portuguese name, the first or maternal family name is Borges and the second or paternal family name is Monteiro. Rômulo Rômulo with Spartak Moscow in 2015Personal informationFull name Rômulo Borges MonteiroDate of birth (1990-09-19) 19 September 1990 (age 33)Place of birth Picos, BrazilHeight 1.84 m (6 ft 1⁄2 in)Position(s) Defensive midfielderTeam informationCurrent team RetrôYouth career2004–2009 Porto de Caruaru2009–2010 Va...

 

Дмитро Іванович ЗаковоротнійНародився 28 травня 1923(1923-05-28)МиколаївПомер 16 листопада 2012(2012-11-16) (89 років)МиколаївГромадянство  СРСР  УкраїнаДіяльність військовослужбовецьВідомий завдяки краєзнавецьНагороди Орден «За мужність» ІІІ ступеня Ювілейна медаль «60 років в...

1473–1829 duchy in northwestern Tuscany, Italian Peninsula Duchy of Massa and Principality of CarraraDucato di Massa e Principato di Carrara (Italian)1473–1829 Flag Coat of arms Motto: Libertas (Latin)FreedomNorthern Italy in 1815.CapitalMassa CarraraCommon languagesItalianReligion Roman CatholicismGovernmentMonarchyMonarch • 1473-1481 Giacomo I Malaspina (first)• 1790-1829 Maria Beatrice d'Este (last) Historical eraModern era• Established 22 ...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Toxic film – news · newspapers · books · scholar · JSTOR (June 2021) 2008 filmToxicDVD coverDirected byAlan PaoWritten byCorey LargeAlan PaoProduced byBrian HartmanCorey LargeAlan PaoBrian HartmanCorey LargeAlan PaoStarringMaster PCorey LargeDomi...

 

Ukrainian diplomatic initiative aimed at recovering control over Crimea Crimea PlatformEmblem of the Crimea PlatformFounded23 August 2021HeadquartersUkraineWebsitecrimea-platform.org/en The Crimea Platform (Ukrainian: Кримська платформа, romanized: Krymska platforma; Crimean Tatar: Qırım Platforması) is a diplomatic summit initiated by Ukrainian Volodymyr Zelenskyy in August 2021 and attended by delegations from 46 countries.[1][2] It is designed to be...

2003 Spanish filmTake My EyesTheatrical release posterSpanishTe doy mis ojos Directed byIcíar BollaínWritten byIcíar BollaínAlicia LunaProduced bySantiago García de LeánizStarringLaia MarullLuis TosarCandela PeñaRosa María SardáSergi CallejaKiti ManverCinematographyCarles GusiEdited byÁngel Hernández ZoidoMusic byAlberto IglesiasDistributed bySogepaqRelease date 2003 (2003) Running time109 min.CountrySpainLanguageSpanish Take My Eyes (Spanish: Te doy mis ojos, lit. '...

 

1979 aviation accident Alia Royal Jordanian Flight 600JY-ADU, the aircraft involved in the accident, seen in 1977.AccidentDate14 March 1979SummaryMicroburst-induced wind shearSiteDoha International Airport, Doha, QatarAircraftAircraft typeBoeing 727-2D3Aircraft nameThe City of PetraOperatorAlia Royal Jordanian AirlinesRegistrationJY-ADUFlight originAmman-Queen Alia International Airport (AMM/OJAI), Amman, JordanStopoverDoha International Airport (DIA/OTBD), Doha, QatarDestinationSee...

 
Kembali kehalaman sebelumnya