Share to: share facebook share twitter share wa share telegram print page

Product (category theory)

In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects.

Definition

Product of two objects

Fix a category Let and be objects of A product of and is an object typically denoted equipped with a pair of morphisms satisfying the following universal property:

  • For every object and every pair of morphisms there exists a unique morphism such that the following diagram commutes:
    Universal property of the product
    Universal property of the product

Whether a product exists may depend on or on and If it does exist, it is unique up to canonical isomorphism, because of the universal property, so one may speak of the product. This has the following meaning: if is another product, there exists a unique isomorphism such that and .

The morphisms and are called the canonical projections or projection morphisms; the letter alliterates with projection. Given and the unique morphism is called the product of morphisms and and is denoted

Product of an arbitrary family

Instead of two objects, we can start with an arbitrary family of objects indexed by a set

Given a family of objects, a product of the family is an object equipped with morphisms satisfying the following universal property:

  • For every object and every -indexed family of morphisms there exists a unique morphism such that the following diagrams commute for all
    Universal product of the product
    Universal product of the product

The product is denoted If then it is denoted and the product of morphisms is denoted

Equational definition

Alternatively, the product may be defined through equations. So, for example, for the binary product:

  • Existence of is guaranteed by existence of the operation
  • Commutativity of the diagrams above is guaranteed by the equality: for all and all
  • Uniqueness of is guaranteed by the equality: for all [1]

As a limit

The product is a special case of a limit. This may be seen by using a discrete category (a family of objects without any morphisms, other than their identity morphisms) as the diagram required for the definition of the limit. The discrete objects will serve as the index of the components and projections. If we regard this diagram as a functor, it is a functor from the index set considered as a discrete category. The definition of the product then coincides with the definition of the limit, being a cone and projections being the limit (limiting cone).

Universal property

Just as the limit is a special case of the universal construction, so is the product. Starting with the definition given for the universal property of limits, take as the discrete category with two objects, so that is simply the product category The diagonal functor assigns to each object the ordered pair and to each morphism the pair The product in is given by a universal morphism from the functor to the object in This universal morphism consists of an object of and a morphism which contains projections.

Examples

In the category of sets, the product (in the category theoretic sense) is the Cartesian product. Given a family of sets the product is defined as with the canonical projections Given any set with a family of functions the universal arrow is defined by

Other examples:

Discussion

An example in which the product does not exist: In the category of fields, the product does not exist, since there is no field with homomorphisms to both and

Another example: An empty product (that is, is the empty set) is the same as a terminal object, and some categories, such as the category of infinite groups, do not have a terminal object: given any infinite group there are infinitely many morphisms so cannot be terminal.

If is a set such that all products for families indexed with exist, then one can treat each product as a functor [3] How this functor maps objects is obvious. Mapping of morphisms is subtle, because the product of morphisms defined above does not fit. First, consider the binary product functor, which is a bifunctor. For we should find a morphism We choose This operation on morphisms is called Cartesian product of morphisms.[4] Second, consider the general product functor. For families we should find a morphism We choose the product of morphisms

A category where every finite set of objects has a product is sometimes called a Cartesian category[4] (although some authors use this phrase to mean "a category with all finite limits").

The product is associative. Suppose is a Cartesian category, product functors have been chosen as above, and denotes a terminal object of We then have natural isomorphisms These properties are formally similar to those of a commutative monoid; a Cartesian category with its finite products is an example of a symmetric monoidal category.

Distributivity

For any objects of a category with finite products and coproducts, there is a canonical morphism where the plus sign here denotes the coproduct. To see this, note that the universal property of the coproduct guarantees the existence of unique arrows filling out the following diagram (the induced arrows are dashed):

The universal property of the product then guarantees a unique morphism induced by the dashed arrows in the above diagram. A distributive category is one in which this morphism is actually an isomorphism. Thus in a distributive category, there is the canonical isomorphism

See also

References

  1. ^ Lambek J., Scott P. J. (1988). Introduction to Higher-Order Categorical Logic. Cambridge University Press. p. 304.
  2. ^ Qiaochu Yuan (June 23, 2012). "Banach spaces (and Lawvere metrics, and closed categories)". Annoying Precision.
  3. ^ Lane, S. Mac (1988). Categories for the working mathematician (1st ed.). New York: Springer-Verlag. p. 37. ISBN 0-387-90035-7.
  4. ^ a b Michael Barr, Charles Wells (1999). Category Theory – Lecture Notes for ESSLLI. p. 62. Archived from the original on 2011-04-13.

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2023) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. ...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها.   لمعانٍ أخرى، طالع قسم المركزي (توضيح). يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة...

 

Sultan of Terengganu (r. 1881–1918) This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Zainal Abidin III of Terengganu – news · newspapers · books · scholar · JSTOR (November 2022) (Learn how and when to remove this template message) Zainal Abidin IIISultan of TerengganuSultan of TerengganuReign1881–1918Coronation1881Predece...

Провінція Лимарі ісп. Provincia de Limarí Герб Прапор Адм. центр Лимарі Країна Чилі Провінція Кокімбо Підрозділи 2 комуни Офіційна мова Іспанська Населення  - повне 156 158 (2002) (25)  - густота 11,52 км² (35) Площа  - повна 13 553,2 км² Висота  - максимальна 383 м  - мінімальна 383 м Губер

 

Список видів бджіл Ізраїлю ? ІзраїльБіорегіонФауністичне царство БіосфераБіогеографічний екорегіон ПалеарктикаМісцевістьКонтинент АзіяКраїна  ІзраїльФауна вищого рангуЗа географією ЄвропаЗа систематикою бджолиЗа екологією суходільна фаунаЗа біогео�...

 

Jamur tak sempurna Conidiophore of Aspergillus sp. Klasifikasi ilmiah Kerajaan: Fungi Species See below. Deuteromycota atau jamur tak sempurna adalah jamur yang belum diketahui cara reproduksi seksualnya. Deuteromycota bereproduksi aseksual dengan spora vegetatif. Deuteromycota disebut juga fungi imperfecti (jamur tidak sempurna). Kelas jamur deuteromycota tidak ditemukan askus maupun basidium sehingga tidak termasuk dalam kelas jamur Ascomycota atau Basidiomycota.[1] Jamur ini hanya ...

Tirai Besi digambarkan dengan garis hitam. Negara anggota Pakta Warsawa ditandai dengan warna merah; negara anggota NATO ditandai dengan warna biru; sedangkan negara netral berwarna abu-abu. Titik hitam adalah Berlin. Yugoslavia, meskipun dipimpin komunis, namun tetap independen dari kedua kubu. Komunis Albania memutus hubungan dengan Uni Soviet awal 1960-an, dan menggabungkan diri dengan China setelah Perpecahan Sino-Soviet, diwarnai arsir abu-abu. Konsep Tirai Besi melambangkan batas-batas ...

 

1999 Indian filmGanga Ki KasamPosterDirected byT L V PrasadWritten byRoopvati BohraAnirudh Tiwari (dialogues)Produced bySunil BohraStarringMithun Chakraborty Jackie ShroffDipti BhatnagarMink Singh Johnny LeverShakti KapoorDalip TahilMukesh Rishi Raza MuradCinematographyRamakrishnanEdited byShyam MukherjiMusic byBappi LahiriRelease date 4 June 1999 (1999-06-04) Running time140 minutesCountryIndiaLanguageHindi Ganga Ki Kasam (transl. The Vow of Ganga) is a 1999 Indian Hindi...

 

Beauty pageant in Sweden Miss Grand SwedenPamela OliveraMiss Grand Sweden 2014Issabella GeorgssonMiss Grand Sweden 2015Formation2013TypeBeauty pageantHeadquartersStockholmLocationSwedenMembership Miss Grand InternationalOfficial language SwedishNational directorPeter HadwardGeneral directorKersten LibaParent organizationMiss Universe Sweden(2013 – 2014)Miss Queen of Scandinavia(2014 – 2021)WebsiteMissQueenOfScandinavia.com Jennie FrondellMiss Grand Sweden 2021 Miss Grand Sweden is a ...

American television network This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shop at Home Network – news · newspapers · books · scholar · JSTOR (December 2022) (Learn how and when to remove this template message) Television channel Shop at Home NetworkOwnershipOwnerMultimedia Commerce GroupHistoryLaunched1987...

 

Sturmtrupp-PfadfinderCountryGermanyFounded1929Defunct1934FounderErich Mönch (Schnauz), Helmuth Hövetborn (Doktor)ReichsfeldmeisterHelmuth Hövetborn (Doktor)  Scouting portal The Sturmtrupp-Pfadfinder was a Scout association in Germany active from 1926 to 1934. The association never had more than 500 members. It was the first Scout association in Germany to admit boys and girls. It was interdenominational and politically neutral. History 1923-1933 Since 1923, there had been Scout group...

 

У Вікіпедії є статті про інших людей із прізвищем Бернадський.Юрій Йосипович Бернадський Народився 23 січня 1915(1915-01-23)Малин (нині Житомирська область)[1][2]Помер 29 березня 2006(2006-03-29) (91 рік)КиївПоховання Берковецьке кладовищеДіяльність стоматологГалузь стоматологі�...

Province of the Spanish Empire (1527-1824), of Gran Colombia (1824-30), and of Venezuela (from 1830) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Venezuela Province – news · newspapers · books · scholar · JSTOR (July 2022) Province of VenezuelaProvincia de Caracas1527–1864 Cross of Burgundy Co...

 

Darjah Kebesaran Sultan Ahmad Shah PahangDianugerahkan oleh Sultan PahangTipeOrdeDidirikan24 Oktober 1977StatusMasih dianugerahkanPendiriSultan Haji Ahmad Shah Al-Musta’in BillahPenguasaAl-Sultan Abdullah Ri'ayatuddin Al-Mustafa Billah ShahTingkatSri Sultan (S.S.A.P.) Darjah Sri Sultan (D.S.A.P.) Setia (S.A.P.) Ahli (A.A.P.)PrioritasTingkat lebih tinggiDarjah Sri Diraja Sultan Ahmad Shah PahangTingkat lebih rendahDarjah Kebesaran Mahkota PahangDarjah Kebesaran Sultan Ahmad Shah Pahang Yang ...

 

Spyglass Hill Golf CourseSpyglass Hill Golf CourseClub informationLocation in the United StatesShow map of the United StatesLocation in CaliforniaShow map of CaliforniaLocationPebble Beach, California,Elevation100 feet (30 m)Established1966, 57 years agoTypePublicOwned byPebble Beach CompanyOperated byPebble Beach CompanyTotal holes18Events hostedAT&T Pebble Beach Pro-Am(1967–present)WebsitePebble Beach ResortsSpyglass Hill Golf CourseDesigned byRobert Trent Jones Sr.Par72Leng...

Kapsul minyak ikan Minyak ikan berasal dari jaringan pada jenis ikan tertentu yang berminyak.[1] Awalnya, minyak ikan diambil dari lemak paus.[2] Lalu minyak tersebut juga diambil dari ikan dan binatang laut lainnya.[2] Minyak ikan mengandung asam lemak omega-3, eicosapentaenoic acid (EPA) dan docosahexaenoic acid (DHA)yang merupakan prekursor untuk eicosanoids yang bisa mengurangi peradangan di seluruh tubuh.[1] Sejarah minyak ikan Minyak hati ikan Cod merupak...

 

SAG Award for Best Actor in a Drama SeriesThe 2022 recipient: Jason BatemanAwarded forOutstanding Performance by a Male Actor in a Drama SeriesLocationLos Angeles, CaliforniaPresented bySAG-AFTRACurrently held byJason Bateman for Ozark (2022)Websitesagawards.org The Screen Actors Guild Award for Outstanding Performance by a Male Actor in a Drama Series is an award given by the Screen Actors Guild to honor the finest acting achievements in dramatic television. Winners and nominees   ...

 

City in Kantō, JapanKoganei 小金井市CityKoganei City Hall FlagSealLocation of Koganei in TokyoKoganei Coordinates: 35°41′58.1″N 139°30′10.7″E / 35.699472°N 139.502972°E / 35.699472; 139.502972CountryJapanRegionKantōPrefectureTokyoGovernment • MayorShinichiro Nishioka (since December 2015)Area • Total11.30 km2 (4.36 sq mi)Population (March 2021) • Total123,698 • Density11,000/km2 ...

Nimber Obdulio Villalba Valenzuela 2° Gobernador del departamento de la cordillera. 15 de agosto de 1998-15 de agosto del 2003Predecesor Francisco RivasSucesor Desconocido Información personalNacimiento 20 de junio de 1952 (71 años) Piribebuy, ParaguayReligión CatolicismoFamiliaCónyuge Rossana del Rocío Vega (desde 1998)EducaciónEducado en Universidad de FloresInformación profesionalOcupación Político paraguayoPartido político Partido Colorado - Asociación Nacional Republican...

 

German curler Maike BeerCurlerBorn (1996-06-07) 7 June 1996 (age 27)Hamburg, GermanyTeamCurling clubCurling Club HamburgSkipEmira AbbesThirdMia HöhneSecondLena KappLeadMaike BeerAlternatePia-Lisa SchöllCurling career Member Association GermanyWorld Championshipappearances1 (2016)European Championshipappearances2 (2015, 2023)Other appearancesWinter Universiade: 1 (2017),World Junior-B Championships: 2 (2016, 2017),European Junior Challenge: 3 (2013, 2014, 2015) Medal record Women's...

 
Kembali kehalaman sebelumnya