Branch of knowledge concerned with building intuition for quantum theory
Quantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relativity, the defining axioms of quantum theory are quite ad hoc, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit.
There exist different approaches to resolve this conceptual gap:
First, one can put quantum physics in contraposition with classical physics: by identifying scenarios, such as Bell experiments, where quantum theory radically deviates from classical predictions, one hopes to gain physical insights on the structure of quantum physics.
Second, one can attempt to find a re-derivation of the quantum formalism in terms of operational axioms.
Third, one can search for a full correspondence between the mathematical elements of the quantum framework and physical phenomena: any such correspondence is called an interpretation.
Fourth, one can renounce quantum theory altogether and propose a different model of the world.
Research in quantum foundations is structured along these roads.
Two or more separate parties conducting measurements over a quantum state can observe correlations which cannot be explained with any local hidden variable theory.[1][2] Whether this should be regarded as proving that the physical world itself is "nonlocal" is a topic of debate,[3][4] but the terminology of "quantum nonlocality" is commonplace. Nonlocality research efforts in quantum foundations focus on determining the exact limits that classical or quantum physics enforces on the correlations observed in a Bell experiment or more complex causal scenarios.[5] This research program has so far provided a generalization of Bell's theorem that allows falsifying all classical theories with a superluminal, yet finite, hidden influence.[6]
Nonlocality can be understood as an instance of quantum contextuality. A situation is contextual when the value of an observable depends on the context in which it is measured (namely, on which other observables are being measured as well). The original definition of measurement contextuality can be extended to state preparations and even general physical transformations.[7]
Epistemic models for the quantum wave-function
A physical property is epistemic when it represents our knowledge or beliefs on the value of a second, more fundamental feature. The probability of an event to occur is an example of an epistemic property. In contrast, a non-epistemic or ontic variable captures the notion of a “real” property of the system under consideration.
There is an on-going debate on whether the wave-function represents the epistemic state of a yet to be discovered ontic variable or, on the contrary, it is a fundamental entity.[8] Under some physical assumptions, the Pusey–Barrett–Rudolph (PBR) theorem demonstrates the inconsistency of quantum states as epistemic states, in the sense above.[9] Note that, in QBism[10] and Copenhagen-type[11] views, quantum states are still regarded as epistemic, not with respect to some ontic variable, but to one's expectations about future experimental outcomes. The PBR theorem does not exclude such epistemic views on quantum states.
Axiomatic reconstructions
Some of the counter-intuitive aspects of quantum theory, as well as the difficulty to extend it, follow from the fact that its defining axioms lack a physical motivation. An active area of research in quantum foundations is therefore to find alternative formulations of quantum theory which rely on physically compelling principles. Those efforts come in two flavors, depending on the desired level of description of the theory: the so-called Generalized Probabilistic Theories approach and the Black boxes approach.
The framework of generalized probabilistic theories
Generalized Probabilistic Theories (GPTs) are a general framework to describe the operational features of arbitrary physical theories. Essentially, they provide a statistical description of any experiment combining state preparations, transformations and measurements. The framework of GPTs can accommodate classical and quantum physics, as well as hypothetical non-quantum physical theories which nonetheless possess quantum theory's most remarkable features, such as entanglement or teleportation.[12] Notably, a small set of physically motivated axioms is enough to single out the GPT representation of quantum theory.[13]
L. Hardy introduced the concept of GPT in 2001, in an attempt to re-derive quantum theory from basic physical principles.[13] Although Hardy's work was very influential (see the follow-ups below), one of his axioms was regarded as unsatisfactory: it stipulated that, of all the physical theories compatible with the rest of the axioms, one should choose the simplest one.[14] The work of Dakic and Brukner eliminated this “axiom of simplicity” and provided a reconstruction of quantum theory based on three physical principles.[14] This was followed by the more rigorous reconstruction of Masanes and Müller.[15]
Axioms common to these three reconstructions are:
The subspace axiom: systems which can store the same amount of information are physically equivalent.
Local tomography: to characterize the state of a composite system it is enough to conduct measurements at each part.
Reversibility: for any two extremal states [i.e., states which are not statistical mixtures of other states], there exists a reversible physical transformation that maps one into the other.
An alternative GPT reconstruction proposed by Chiribella et al.[16][17] around the same time is also based on the
Purification axiom: for any state of a physical system A there exists a bipartite physical system and an extremal state (or purification) such that is the restriction of to system . In addition, any two such purifications of can be mapped into one another via a reversible physical transformation on system .
The use of purification to characterize quantum theory has been criticized on the grounds that it also applies in the Spekkens toy model.[18]
To the success of the GPT approach, it can be countered that all such works just recover finite dimensional quantum theory. In addition, none of the previous axioms can be experimentally falsified unless the measurement apparatuses are assumed to be tomographically complete.
Categorical Quantum Mechanics (CQM) or Process Theories are a general framework to describe physical theories, with an emphasis on processes and their compositions.[19] It was pioneered by Samson Abramsky and Bob Coecke. Besides its influence in quantum foundations, most notably the use of a diagrammatic formalism, CQM also plays an important role in quantum technologies, most notably in the form of ZX-calculus. It also has been used to model theories outside of physics, for example the DisCoCat compositional natural language meaning model.
In the black box or device-independent framework, an experiment is regarded as a black box where the experimentalist introduces an input (the type of experiment) and obtains an output (the outcome of the experiment). Experiments conducted by two or more parties in separate labs are hence described by their statistical correlations alone.
From Bell's theorem, we know that classical and quantum physics predict different sets of allowed correlations. It is expected, therefore, that far-from-quantum physical theories should predict correlations beyond the quantum set. In fact, there exist instances of theoretical non-quantum correlations which, a priori, do not seem physically implausible.[20][21][22] The aim of device-independent reconstructions is to show that all such supra-quantum examples are precluded by a reasonable physical principle.
The physical principles proposed so far include no-signalling,[22] Non-Trivial Communication Complexity,[23] No-Advantage for Nonlocal computation,[24]Information Causality,[25] Macroscopic Locality,[26] and Local Orthogonality.[27] All these principles limit the set of possible correlations in non-trivial ways. Moreover, they are all device-independent: this means that they can be falsified under the assumption that we can decide if two or more events are space-like separated. The drawback of the device-independent approach is that, even when taken together, all the afore-mentioned physical principles do not suffice to single out the set of quantum correlations.[28] In other words: all such reconstructions are partial.
An interpretation of quantum theory is a correspondence between the elements of its mathematical formalism and physical phenomena. For instance, in the pilot wave theory, the quantum wave function is interpreted as a field that guides the particle trajectory and evolves with it via a system of coupled differential equations. Most interpretations of quantum theory stem from the desire to solve the quantum measurement problem.
Extensions of quantum theory
In an attempt to reconcile quantum and classical physics, or to identify non-classical models with a dynamical causal structure, some modifications of quantum theory have been proposed.
Collapse models
Collapse models posit the existence of natural processes which periodically localize the wave-function.[29] Such theories provide an explanation to the nonexistence of superpositions of macroscopic objects, at the cost of abandoning unitarity and exact energy conservation.
Quantum measure theory
In Sorkin's quantum measure theory (QMT), physical systems are not modeled via unitary rays and Hermitian operators, but through a single matrix-like object, the decoherence functional.[30] The entries of the decoherence functional determine the feasibility to experimentally discriminate between two or more different sets of classical histories, as well as the probabilities of each experimental outcome. In some models of QMT the decoherence functional is further constrained to be positive semidefinite (strong positivity). Even under the assumption of strong positivity, there exist models of QMT which generate stronger-than-quantum Bell correlations.[31]
Acausal quantum processes
The formalism of process matrices starts from the observation that, given the structure of quantum states, the set of feasible quantum operations follows from positivity considerations. Namely, for any linear map from states to probabilities one can find a physical system where this map corresponds to a physical measurement. Likewise, any linear transformation that maps composite states to states corresponds to a valid operation in some physical system. In view of this trend, it is reasonable to postulate that any high-order map from quantum instruments (namely, measurement processes) to probabilities should also be physically realizable.[32] Any such map is termed a process matrix. As shown by Oreshkov et al.,[32] some process matrices describe situations where the notion of global causality breaks.
The starting point of this claim is the following mental experiment: two parties, Alice and Bob, enter a building and end up in separate rooms. The rooms have ingoing and outgoing channels from which a quantum system periodically enters and leaves the room. While those systems are in the lab, Alice and Bob are able to interact with them in any way; in particular, they can measure some of their properties.
Since Alice and Bob's interactions can be modeled by quantum instruments, the statistics they observe when they apply one instrument or another are given by a process matrix. As it turns out, there exist process matrices which would guarantee that the measurement statistics collected by Alice and Bob is incompatible with Alice interacting with her system at the same time, before or after Bob, or any convex combination of these three situations.[32] Such processes are called acausal.
^Barnum, H.; Barrett, J.; Leifer, M.; Wilce, A. (2012). S. Abramsky and M. Mislove (ed.). Teleportation in General Probabilistic Theories. AMS Proceedings of Symposia in Applied Mathematics. American Mathematical Society, Providence.
^ abDakic, B.; Brukner, Č. (2011). "Quantum Theory and Beyond: Is Entanglement Special?". In H. Halvorson (ed.). Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press. pp. 365–392.
^D'Ariano, G. M.; Chiribella, G.; Perinotti, P. (2017). Quantum Theory from First Principles: An Informational Approach. Cambridge University Press. ISBN9781107338340. OCLC972460315.
^Khalfin, L.A.; Tsirelson, B. S. (1985). Lahti; et al. (eds.). Quantum and quasi-classical analogs of Bell inequalities. Symposium on the Foundations of Modern Physics. World Sci. Publ. pp. 441–460.
2013 studio album by StryperSecond ComingStudio album by StryperReleasedMarch 26, 2013Recorded2012GenreChristian metal, heavy metalLabelFrontiersProducerMichael SweetStryper chronology The Covering(2011) Second Coming(2013) No More Hell to Pay(2013) Professional ratingsReview scoresSourceRatingAllMusic[1] Second Coming is the fourteenth release and ninth studio album by American Christian heavy metal/hard rock band Stryper. The album features re-recorded versions of earlier ma...
Kabinet Sharett keduaKabinet Pemerintahan Israel ke-6Dibentuk29 Juni 1955 (1955-06-29)Diselesaikan03 November 1955 (1955-11-03)Struktur pemerintahanKepala negaraYitzhak Ben-ZviKepala pemerintahanMoshe SharettStatus di legislatifkoalisiPemimpin oposisiMeir Ya'ariSejarahPeriodeKnesset ke-2PendahuluKabinet Israel ke-5PenggantiKabinet Israel ke-7 Pemerintahan Israel keenam dibentuk oleh Moshe Sharett pada Knesset kedua pada 29 Juni 1955. Satu-satunya perubahan dari kabinet tersebut dari...
Dua olahragawan melakukan tos siku Tos siku (bahasa Inggris: elbow bump) adalah tos yang dilakukan dengan saling menyentuhkan siku. Jenis salaman ini dianggap lebih aman secara kesehatan daripada jabat tangan biasa.[1][2][3] Meskipun demikian, tos siku masih dianggap sangat berisiko pada masa Pandemi Koronavirus, dan disarankan untuk melakukan salaman jarak jauh tanpa sentuhan sama sekali.[4] Contoh Raphael Guerreiro merayakan golnya dengan melakukan tos siku d...
Опис файлу Опис Сили, що діють на прив'язаний аеростат Джерело Власна робота Час створення Невідомий Автор зображення Користувач:Inna Z Ліцензія див. нижче Ліцензування Я, власник авторських прав на цей твір, добровільно передаю його у суспільне надбання. У випадку, якщо це ю
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2016) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. ...
Peta pembagian administratif tingkat pertama Trinidad dan Tobago Pembagian administratif Trinidad dan Tobago terdiri atas 9 region dan 5 munisipalitas pada tingkat pertama. lbsPembagian administratif Amerika Amerika Utara Amerika Selatan Negara berdaulat Amerika Serikat Antigua dan Barbuda Argentina Bahama Barbados Belize Bolivia Brasil Chili Dominica Republik Dominika Ekuador El Salvador Grenada Guatemala Guyana Haiti Honduras Jamaika Kanada Kolombia Kosta Rika Kuba Meksiko Nikaragua Panama ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) باربادوس في الألعاب الأولمبية علم باربادوس رمز ل.أ.د. BAR ل.أ.و. اللجنة الأولمبية لبربادوسرابط إض
BLT beralih ke halaman ini. Untuk roti lapis, lihat BLT (roti lapis). Bantuan Langsung Tunai (bahasa Inggris: cash transfers) atau disingkat BLT adalah program bantuan pemerintah berjenis pemberian uang tunai atau beragam bantuan lainnya, baik bersyarat (conditional cash transfer) maupun tak bersyarat (unconditional cash transfer) untuk masyarakat miskin.[1] Negara yang pertama kali memprakarsai BLT adalah Brasil, dan selanjutnya diadopsi oleh negara-negara lainnya.[2] Besaran...
French harpsichordist, dancer and composer Jacques Champion de Chambonnières (Jacques Champion, commonly referred to as Chambonnières) (c. 1601/2 – 1672) was a French harpsichordist, dancer and composer. Born into a musical family, Chambonnières made an illustrious career as court harpsichordist in Paris and was considered by many of his contemporaries to be one of the greatest musicians in Europe. However, late in life Chambonnières gradually fell out of favor at the court and lost his...
American provider of on-demand streaming media For the separate Japanese video-on-demand service that was spun off in 2014, see Hulu Japan. HuluLogo used since 2018Type of businessJoint ventureType of siteOTT video streaming platformHeadquartersLos Angeles, California, U.S.Area servedUnited StatesOwner The Walt Disney Company (67%)[1][2] NBCUniversal (Comcast) (33%; sale to Disney pending) Key peopleJoe Earley (president)ParentDisney StreamingURLhulu.comAdvertisingYe...
Village in Burgas Province, BulgariaZabernovo ЗаберновоVillageCountry BulgariaProvinceBurgas ProvinceMunicipalityMalko Tarnovo MunicipalityTime zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Zabernovo (Bulgarian: Заберново) is a village in Malko Tarnovo Municipality, in Burgas Province, in southeastern Bulgaria.[1] It is situated in Strandzha Nature Park. Paroria, a forest known for being the 14th-century monastic site of the hesychast Gregory of Sinai, ...
Avezzano AvezzanoTọa độ: 42°2′B 13°26′Đ / 42,033°B 13,433°Đ / 42.033; 13.433 Quốc gia ÝVùng AbruzzoTỉnhL'AquilaThủ phủAvezzano Độ cao695 m (2,280 ft) • Mật độ351,60/km2 (910,6/mi2)Múi giờUTC+1, UTC+2 Mã bưu chính67051Mã điện thoại0863Thành phố kết nghĩaBelén, Catamarca, Santa María, Ayacucho, Câmpulung Moldovenesc Mã ISTAT066Mã hành chínhA515Danh...
Category 5 Atlantic hurricane in 1961 For other storms of the same name, see List of storms named Hattie. Hurricane Hattie Radar image of Hurricane Hattie on October 30Meteorological historyFormedOctober 27, 1961DissipatedNovember 1, 1961Category 5 hurricane1-minute sustained (SSHWS/NWS)Highest winds165 mph (270 km/h)Lowest pressure914 mbar (hPa); 26.99 inHgOverall effectsFatalities319Damage$60.3 million (1961 USD)Areas affectedBritish Honduras (Belize), Guatemal...
НорфолкNaval Station NorfolkНорфолк, Вірджинія в США9 американських авіаносців на стоянці на ВМБ НорфолкКоординати36°56′42″ пн. ш. 76°18′47″ зх. д. / 36.945° пн. ш. 76.313056° зх. д. / 36.945; -76.313056Координати: 36°56′42″ пн. ш. 76°18′47″ зх. д. / 36.9...
This article is about the Sjöwall and Wahlöö book. For the 1986 book by Paul Auster, see The New York Trilogy. 1972 novel by Maj Sjöwall and Per Wahlöö The Locked Room First Swedish editionAuthorMaj Sjöwall and Per WahlööOriginal titleDet slutna rummetTranslatorPaul Britten Austin[1]CountrySwedenLanguageSwedishSeriesMartin Beck seriesPublisherNorstedts Förlag (Swedish)Pantheon Books (English)Publication date1972Published in English1973Pages291ISBN91-1-725301-2OCLC1...
Indian cinematographer In this Indian name, the name Sivan is a patronymic, and the person should be referred to by the given name, Santhosh. Santosh SivanSantosh in 2011Born (1964-02-08) 8 February 1964 (age 59)Haripad, Kerala, India[1]NationalityIndianAlma materFilm and Television Institute of India, PuneMar Ivanios College, TrivandrumLoyola School, TrivandrumOccupationsCinematographerfilm directoractorfilm producerSpouse Deepa (m. 1993)Child...
Dirty DancingPoster filmSutradara Emile Ardolino Produser Linda Gottlieb Ditulis oleh Eleanor Bergstein PemeranPatrick SwayzeJennifer GreyJerry OrbachCynthia RhodesPenata musikJohn MorrisErich BullingSinematograferJeffrey JurPenyuntingPeter C. FrankDistributorVestron PicturesTanggal rilis 21 Agustus 1987 (1987-08-21) Durasi100 menitNegara Amerika Serikat Bahasa Inggris Anggaran$6 jutaPendapatankotor$213,954,274 Dirty Dancing adalah sebuah film roman Amerika Serikat tahun 1987. Film...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2022) المقر الدولي للتعليم والبحث والخدمات العرقيةمعلومات عامة ICEERS is dedicated to transforming society’s relationship with psychoactive plants. We do so by engaging with some of the fundamental issues resulting from the globalization ...
Canadian television writer and producer This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (March 2016) (Learn how and when to remove this template message) Todd ThickeThicke at Realscreen West 2016BornOntario, CanadaOccupation(s)Television producer, writerKnown forExecutive producer and head writer of America's Funniest Home VideosChildren2RelativesAlan Thi...
Metal tool used in rock climbing This article is about the rock climbing tool. For other uses, see Piton (disambiguation). Part of a series onClimbing Lists Climbers Piolet d'Or winners IFSC victories Equipment Knots Historical events Grade milestones Eight-thousanders Terminology Types of rock climbing Aid Big wall Multi-pitch Bouldering Highball Competition Speed Free Sport Traditional Solo Free solo Deep-water solo Rope solo Top roping Types of mountaineering Alpine Mixed Via ferrata Himal...