Share to: share facebook share twitter share wa share telegram print page

Quaternion group

Quaternion group multiplication table (simplified form)
1 i j k
1 1 i j k
i i −1 k j
j j k −1 i
k k j i −1
Cycle diagram of Q8. Each color specifies a series of powers of any element connected to the identity element e = 1. For example, the cycle in red reflects the fact that i2 = e, i3 = i and i4 = e. The red cycle also reflects that i2 = e, i3 = i and i4 = e.

In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation

where e is the identity element and e commutes with the other elements of the group. These relations, discovered by W. R. Hamilton, also generate the quaternions as an algebra over the real numbers.

Another presentation of Q8 is

Like many other finite groups, it can be realized as the Galois group of a certain field of algebraic numbers.[1]

Compared to dihedral group

The quaternion group Q8 has the same order as the dihedral group D4, but a different structure, as shown by their Cayley and cycle graphs:

Q8 D4
Cayley graph
Red arrows connect ggi, green connect ggj.
Cycle graph

In the diagrams for D4, the group elements are marked with their action on a letter F in the defining representation R2. The same cannot be done for Q8, since it has no faithful representation in R2 or R3. D4 can be realized as a subset of the split-quaternions in the same way that Q8 can be viewed as a subset of the quaternions.

Cayley table

The Cayley table (multiplication table) for Q8 is given by:[2]

× e e i i j j k k
e e e i i j j k k
e e e i i j j k k
i i i e e k k j j
i i i e e k k j j
j j j k k e e i i
j j j k k e e i i
k k k j j i i e e
k k k j j i i e e

Properties

The elements i, j, and k all have order four in Q8 and any two of them generate the entire group. Another presentation of Q8[3] based in only two elements to skip this redundancy is:

For instance, writing the group elements in lexicographically minimal normal forms, one may identify:

The quaternion group has the unusual property of being Hamiltonian: Q8 is non-abelian, but every subgroup is normal.[4] Every Hamiltonian group contains a copy of Q8.[5]

The quaternion group Q8 and the dihedral group D4 are the two smallest examples of a nilpotent non-abelian group.

The center and the commutator subgroup of Q8 is the subgroup . The inner automorphism group of Q8 is given by the group modulo its center, i.e. the factor group which is isomorphic to the Klein four-group V. The full automorphism group of Q8 is isomorphic to S4, the symmetric group on four letters (see Matrix representations below), and the outer automorphism group of Q8 is thus S4/V, which is isomorphic to S3.

The quaternion group Q8 has five conjugacy classes, and so five irreducible representations over the complex numbers, with dimensions 1, 1, 1, 1, 2:

Trivial representation.

Sign representations with i, j, k-kernel: Q8 has three maximal normal subgroups: the cyclic subgroups generated by i, j, and k respectively. For each maximal normal subgroup N, we obtain a one-dimensional representation factoring through the 2-element quotient group G/N. The representation sends elements of N to 1, and elements outside N to −1.

2-dimensional representation: Described below in Matrix representations. It is not realizable over the real numbers, but is a complex representation: indeed, it is just the quaternions considered as an algebra over , and the action is that of left multiplication by .

The character table of Q8 turns out to be the same as that of D4:

Representation(ρ)/Conjugacy class { e } { e } { i, i } { j, j } { k, k }
Trivial representation 1 1 1 1 1
Sign representation with i-kernel 1 1 1 −1 −1
Sign representation with j-kernel 1 1 −1 1 −1
Sign representation with k-kernel 1 1 −1 −1 1
2-dimensional representation 2 −2 0 0 0

Nevertheless, all the irreducible characters in the rows above have real values, this gives the decomposition of the real group algebra of into minimal two-sided ideals:

where the idempotents correspond to the irreducibles:

so that

Each of these irreducible ideals is isomorphic to a real central simple algebra, the first four to the real field . The last ideal is isomorphic to the skew field of quaternions by the correspondence:

Furthermore, the projection homomorphism given by has kernel ideal generated by the idempotent:

so the quaternions can also be obtained as the quotient ring . Note that this is irreducible as a real representation of , but splits into two copies of the two-dimensional irreducible when extended to the complex numbers. Indeed, the complex group algebra is where is the algebra of biquaternions.

Matrix representations

Multiplication table of quaternion group as a subgroup of SL(2,C). The entries are represented by sectors corresponding to their arguments: 1 (green), i (blue), −1 (red), −i (yellow).

The two-dimensional irreducible complex representation described above gives the quaternion group Q8 as a subgroup of the general linear group . The quaternion group is a multiplicative subgroup of the quaternion algebra:

which has a regular representation by left multiplication on itself considered as a complex vector space with basis so that corresponds to the -linear mapping The resulting representation

is given by:

Since all of the above matrices have unit determinant, this is a representation of Q8 in the special linear group .[6]

A variant gives a representation by unitary matrices (table at right). Let correspond to the linear mapping so that is given by:

It is worth noting that physicists exclusively use a different convention for the matrix representation to make contact with the usual Pauli matrices:

This particular choice is convenient and elegant when one describes spin-1/2 states in the basis and considers angular momentum ladder operators

Multiplication table of the quaternion group as a subgroup of SL(2,3). The field elements are denoted 0, +, −.

There is also an important action of Q8 on the 2-dimensional vector space over the finite field (table at right). A modular representation is given by

This representation can be obtained from the extension field:

where and the multiplicative group has four generators, of order 8. For each the two-dimensional -vector space admits a linear mapping:

In addition we have the Frobenius automorphism satisfying and Then the above representation matrices are:

This representation realizes Q8 as a normal subgroup of GL(2, 3). Thus, for each matrix , we have a group automorphism

with In fact, these give the full automorphism group as:

This is isomorphic to the symmetric group S4 since the linear mappings permute the four one-dimensional subspaces of i.e., the four points of the projective space

Also, this representation permutes the eight non-zero vectors of giving an embedding of Q8 in the symmetric group S8, in addition to the embeddings given by the regular representations.

Galois group

Richard Dedekind considered the field in attempting to relate the quaternion group to Galois theory.[7] In 1936 Ernst Witt published his approach to the quaternion group through Galois theory.[8]

In 1981, Richard Dean showed the quaternion group can be realized as the Galois group Gal(T/Q) where Q is the field of rational numbers and T is the splitting field of the polynomial

.

The development uses the fundamental theorem of Galois theory in specifying four intermediate fields between Q and T and their Galois groups, as well as two theorems on cyclic extension of degree four over a field.[1]

Generalized quaternion group

A generalized quaternion group Q4n of order 4n is defined by the presentation[3]

for an integer n ≥ 2, with the usual quaternion group given by n = 2.[9] Coxeter calls Q4n the dicyclic group , a special case of the binary polyhedral group and related to the polyhedral group and the dihedral group . The generalized quaternion group can be realized as the subgroup of generated by

where .[3] It can also be realized as the subgroup of unit quaternions generated by[10] and .

The generalized quaternion groups have the property that every abelian subgroup is cyclic.[11] It can be shown that a finite p-group with this property (every abelian subgroup is cyclic) is either cyclic or a generalized quaternion group as defined above.[12] Another characterization is that a finite p-group in which there is a unique subgroup of order p is either cyclic or a 2-group isomorphic to generalized quaternion group.[13] In particular, for a finite field F with odd characteristic, the 2-Sylow subgroup of SL2(F) is non-abelian and has only one subgroup of order 2, so this 2-Sylow subgroup must be a generalized quaternion group, (Gorenstein 1980, p. 42). Letting pr be the size of F, where p is prime, the size of the 2-Sylow subgroup of SL2(F) is 2n, where n = ord2(p2 − 1) + ord2(r).

The Brauer–Suzuki theorem shows that the groups whose Sylow 2-subgroups are generalized quaternion cannot be simple.

Another terminology reserves the name "generalized quaternion group" for a dicyclic group of order a power of 2,[14] which admits the presentation

See also

Notes

  1. ^ a b Dean, Richard (1981). "A Rational Polynomial whose Group is the Quaternions". The American Mathematical Monthly. 88 (1): 42–45. doi:10.2307/2320711. JSTOR 2320711.
  2. ^ See also a table from Wolfram Alpha
  3. ^ a b c Johnson 1980, pp. 44–45
  4. ^ See Hall (1999), p. 190
  5. ^ See Kurosh (1979), p. 67
  6. ^ Artin 1991
  7. ^ Richard Dedekind (1887) "Konstrucktion der Quaternionkörpern", Ges. math. Werk II 376–84
  8. ^ Ernst Witt (1936) "Konstruktion von galoisschen Körpern..."Crelle's Journal 174: 237-45
  9. ^ Some authors (e.g., Rotman 1995, pp. 87, 351) refer to this group as the dicyclic group, reserving the name generalized quaternion group to the case where n is a power of 2.
  10. ^ Brown 1982, p. 98
  11. ^ Brown 1982, p. 101, exercise 1
  12. ^ Cartan & Eilenberg 1999, Theorem 11.6, p. 262
  13. ^ Brown 1982, Theorem 4.3, p. 99
  14. ^ Roman, Steven (2011). Fundamentals of Group Theory: An Advanced Approach. Springer. pp. 347–348. ISBN 9780817683016.

References

Read other articles:

Peta Lokasi Kabupaten Lombok Utara di Nusa Tenggara Barat Berikut ini merupakan Daftar kecamatan dan kelurahan/desa di Kabupaten Lombok Utara, Provinsi Nusa Tenggara Barat, Indonesia. Kabupaten Lombok Utara terdiri dari 5 Kecamatan dan 43 Desa. Pada tahun 2017, jumlah penduduknya mencapai 233.691 jiwa dengan luas wilayah 776,25 km² dan sebaran penduduk 301 jiwa/km².[1][2] Daftar kecamatan dan desa di Kabupaten Lombok Utara, adalah sebagai berikut: Kode Kemendagri Kecamatan J...

 

Madeira Daerah otonom (Região Autónoma) Pemandangan Funchal yang merupakan ibukota Madeira. Bendera Lambang Nama resmi: Região Autónoma da Madeira Nama asal: Madeira, Portugis untuk kayu Negara  Portugal Daerah Otonomi  Madeira Region Samudra Atlantik Subregion Tore-Madeira Ridge Kepulauan Madeira, Pulau Porto Santo, Desertas, Selvagens Munisipalitas Calheta, Câmara de Lobos, Funchal, Machico, Ponta do Sol, Porto Moniz, Porto Santo, Ribeira Brava, Santa Cruz...

 

Coulommes-la-MontagnecomuneCoulommes-la-Montagne – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Marna ArrondissementReims CantoneFismes-Montagne de Reims TerritorioCoordinate49°13′N 3°55′E / 49.216667°N 3.916667°E49.216667; 3.916667 (Coulommes-la-Montagne)Coordinate: 49°13′N 3°55′E / 49.216667°N 3.916667°E49.216667; 3.916667 (Coulommes-la-Montagne) Superficie2,71 km² Abitanti229[1] (2009) Densit�...

English actress (1923–1992) Maxine AudleyBornMaxine Hecht(1923-04-29)29 April 1923London, EnglandDied23 July 1992(1992-07-23) (aged 69)Fulham, London, EnglandOther namesViolet M. HechtOccupationActressYears active1947–1992Spouses Leonard Cassini ​(m. 1944)​ Andrew Broughton (dates unknown) Frederick Granville ​ ​(m. 1954⁠–⁠1965)​ Leo Maguire ​(m. 1978)​ Children1...

 

Commonwealth of Vermont Республіка Вермонт невизнана держава ↓ 1777 – 1791 Прапор Республіки Вермонт Печатка ДевізСвобода і єдність (англ. Freedom and Unity) Республіка Вермонт: історичні кордони на карті Столиця Віндзор, потім Кастлтон Мови англійська Форма правління Республіка губер�...

 

Hikueru Localização de Hikueru no arquipélago de Tuamotu. Coordenadas: 17° 32' 41 S 137° 36' 47 O Geografia física País Polinésia Francesa Arquipélago Tuamotu Área 49  km² Geografia humana População 377 (2007) Densidade 7,7  hab./km² Hikueru é uma das ilhas do arquipélago de Tuamotu-Gambier, pertencente ao Taiti.[1][2] Referências ↑ «UM - Hikueru». Consultado em 16 de fevereiro de 2014. Arquivado do original em 3 de fevereiro de 2007  �...

Britania Raya padaOlimpiadeBendera Britania RayaKode IOCGBRKONAsosiasi Olimpiade Britania RayaMedaliPeringkat ke-4 286 316 315 Total 917 Penampilan Musim Panas18961900190419081912192019241928193219361948195219561960196419681972197619801984198819921996200020042008201220162020Penampilan Musim Dingin192419281932193619481952195619601964196819721976198019841988199219941998200220062010201420182022Penampilan terkait lainnyaPermainan Interkala 1906  Irlandia (1924–sekarang) Para atlet dari Bri...

 

Mrs Warren's Profession (publicada en español como La profesión de la Señora Warren y Trata de blancas) es una obra de teatro escrita por George Bernard Shaw en 1893. Shaw dijo que había escrito la obra para llamar la atención sobre la verdad de que la prostitución es causada, no por depravación femenina y libertinaje masculino, sino simplemente por el falta de recursos, autoestima y sustento que reciben tan vergonzosamente las mujeres que las más pobres de ellas se ven obligadas a re...

 

Daniel BendannDaniel Bendann c. 1910Born1836GermanyDiedDecember 6, 1914Baltimore, MarylandOccupationPhotographerKnown forBendann Brothers Backgrounds Daniel Bendann (1836 - December 6, 1914) along with his brother David Bendann were American Civil War Era photographers known for their elegant photographic backgrounds.[1] Daniel founded their gallery, Bendann Brothers, in 1859 and it remains in the family as of 2019, considered Baltimore's oldest gallery.[1][2][...

Malaysian singer and songwriter (1954–1992) This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) In this Malay name, there is no famil...

 

Species of lizard Agama armata Serengeti, Tanzania Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Reptilia Order: Squamata Suborder: Iguania Family: Agamidae Genus: Agama Species: A. armata Binomial name Agama armataPeters, 1855 Synonyms Agama hispida armata Agama hispida mertensi Agama aculeata armata The tropical spiny agama, northern ground agama, or Peter's ground agama (Agama armata) is a species of lizard from the family Agamidae, found in mos...

 

2014 video game 2014 video gameAssassin's Creed RogueCover art depicting protagonist Shay CormacDeveloper(s)Ubisoft Sofia[a]Publisher(s)UbisoftDirector(s)Mikhail LozanovSpass KroushkovMartin CapelProducer(s)Ivan BalabanovDesigner(s)Martin CapelArtist(s)Eddie BennunWriter(s)Richard FarreseComposer(s)Elitsa AlexandrovaSeriesAssassin's CreedEngineAnvilNextPlatform(s)PlayStation 3Xbox 360WindowsPlayStation 4Xbox OneNintendo SwitchGoogle StadiaRelease November 11, 2014 PlayStation 3, Xbox ...

German footballer Nassim Banouas Nassium Banouas in 2010Personal informationFull name Nassim BanouasDate of birth (1986-09-08) 8 September 1986 (age 37)Place of birth Worms, West GermanyHeight 1.87 m (6 ft 1+1⁄2 in)Position(s) DefenderYouth career TuS Neuhausen0000–1998 SV Horchheim1998–2003 1. FC Kaiserslautern2003–2005 1. FSV Mainz 05Senior career*Years Team Apps (Gls)2005–2006 1. FSV Mainz 05 II 11 (4)2006 1. FSV Mainz 05 0 (0)2006–2007 Sportfreunde Sieg...

 

Serbian hip hop band This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Bad Copy – news · newspapers · books · scholar · JSTOR (July 2020) (Learn how and when to remove this template message) Bad CopyBad Copy members in 2005.Background informationOriginBelgrade, Serbia, FR YugoslaviaGenresHip-hop, comedy rapYea...

 

Irish non-governmental organisation Tree Council of IrelandFormation1985TypeNon-Profit OrganisationLegal statusCharityPurposeTree Establishment & conservation. Forest Protection.HeadquartersCabinteely HouseLocationCabinteely House, The Park, Park Drive, Dublin 18Region served IrelandKey peoplePresident: Cormac Downey Vice President: Felicity Gaffney Communications Officer: Éanna Ní Lamhna CEO: Brendan FitzsimonsStaff 2Websitetreecouncil.ie The Tree Council of Ireland is a non-profit org...

Volcano at the western end of Banten, Indonesia For the Mbum language of Cameroon, see Karang language. Not to be confused with Kareng. Gunung KarangMount Karang in Banten. Photo courtesy SumarsoHighest pointElevation1,768 m (5,801 ft)[1]Prominence1,703 m (5,587 ft)[2]ListingList of volcanoes in IndonesiaUltraRibuCoordinates6°16′09″S 106°03′00″E / 6.26917°S 106.05000°E / -6.26917; 106.05000[2]NamingEnglish tr...

 

У этого термина существуют и другие значения, см. Шеллак (значения). Шеллак Шелла́к (от нидерл. schellak) — природная смола, экскретируемая самками ряда родов (Metatachardia, Kerria, Laccifer, Tachardiella, Austrotachardiella, Afrotachardina, Tachardina) насекомых-червецов семейства Kerriidae, паразитирующими на неко�...

 

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini berisi daftar yang lebih baik ditulis dalam bentuk prosa. Anda dapat membantu Wikipedia dengan mengubah artikel ini ke dalam bentuk prosa, jika sesuai. (December 2020) Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan...

Airport serving Tokyo, Japan Haneda redirects here. For the neighborhood of Ōta, Tokyo, see Haneda, Ōta, Tokyo. For the surname, see Haneda (surname). Tokyo International Airport redirects here. For Tokyo's other international airport, see Narita International Airport. Tokyo International Airport東京国際空港Tōkyō Kokusai KūkōIATA: HNDICAO: RJTTWMO: 47671SummaryAirport typePublicOwner/OperatorMinistry of Land, Infrastructure, Transport and TourismServesGreater Tokyo AreaLocationŌt...

 

Historic house in Staten Island, New York United States historic placeElizabeth Alice Austen House –Clear Comfort[1]U.S. National Register of Historic PlacesU.S. National Historic LandmarkNew York State Register of Historic PlacesNew York City Landmark No. 0371 Show map of New York CityShow map of New YorkShow map of the United StatesLocation2 Hylan BoulevardStaten IslandNew York City, New YorkCoordinates40°36′53.7″N 74°3′49″W / 40.614917°N 74.06...

 
Kembali kehalaman sebelumnya