Share to: share facebook share twitter share wa share telegram print page

RNA-dependent RNA polymerase

RNA-dependent RNA polymerase
Stalled HCV RNA replicase (NS5B), in complex with sofosbuvir (PDB 4WTG).
Identifiers
EC no.2.7.7.48
CAS no.9026-28-2
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

RNA-dependent RNA polymerase (RdRp) or RNA replicase is an enzyme that catalyzes the replication of RNA from an RNA template. Specifically, it catalyzes synthesis of the RNA strand complementary to a given RNA template. This is in contrast to typical DNA-dependent RNA polymerases, which all organisms use to catalyze the transcription of RNA from a DNA template.

RdRp is an essential protein encoded in the genomes of most RNA-containing viruses that lack a DNA stage,[1][2] including SARS-CoV-2. Some eukaryotes also contain RdRps, which are involved in RNA interference and differ structurally from viral RdRps.

History

Viral RdRps were discovered in the early 1960s from studies on mengovirus and polio virus when it was observed that these viruses were not sensitive to actinomycin D, a drug that inhibits cellular DNA-directed RNA synthesis. This lack of sensitivity suggested the action of a virus-specific enzyme that could copy RNA from an RNA template.[3]

Distribution

Structure and replication elongation mechanism of a RdRp

RdRps are highly conserved in viruses and are related to telomerase, though the reason for this was an ongoing question as of 2009.[4] The similarity led to speculation that viral RdRps are ancestral to human telomerase.[5]

The most famous example of RdRp is in the polio virus. The viral genome is composed of RNA, which enters the cell through receptor-mediated endocytosis. From there, the RNA acts as a template for complementary RNA synthesis. The complementary strand acts as a template for the production of new viral genomes that are packaged and released from the cell ready to infect more host cells. The advantage of this method of replication is that no DNA stage complicates replication. The disadvantage is that no 'back-up' DNA copy is available.[6]

Many RdRps associate tightly with membranes making them difficult to study. The best-known RdRps are polioviral 3Dpol, vesicular stomatitis virus L,[7] and hepatitis C virus NS5B protein.

Many eukaryotes have RdRps that are involved in RNA interference: these amplify microRNAs and small temporal RNAs and produce double-stranded RNA using small interfering RNAs as primers.[8] These RdRps are used in the defense mechanisms and can be appropriated by RNA viruses.[9] Their evolutionary history predates the divergence of major eukaryotic groups.[10]

Replication

RdRp differs from DNA dependent RNA polymerase as it catalyzes RNA synthesis of strands complementary to a given RNA template. The RNA replication process is a four-step mechanism:

  • Nucleoside triphosphate (NTP) binding – initially, the RdRp presents with a vacant active site in which an NTP binds, complementary to the corresponding nucleotide on the template strand. Correct NTP binding causes the RdRp to undergo a conformational change.[11]
  • Active site closure – the conformational change, initiated by the correct NTP binding, results in the restriction of active site access and produces a catalytically competent state.[11]
  • Phosphodiester bond formation – two Mg2+ ions are present in the catalytically active state and arrange themselves around the newly synthesized RNA chain such that the substrate NTP undergoes a phosphatidyl transfer and forms a phosphodiester bond with the new chain.[12] Without the use of these Mg2+ ions, the active site is no longer catalytically stable and the RdRp complex changes to an open conformation.[12]
  • Translocation – once the active site is open, the RNA template strand moves by one position through the RdRp protein complex and continues chain elongation by binding a new NTP, unless otherwise specified by the template.[11]

RNA synthesis can be performed by a primer-independent (de novo) or a primer-dependent mechanism that utilizes a viral protein genome-linked (VPg) primer.[13] The de novo initiation consists in the addition of a NTP to the 3'-OH of the first initiating NTP.[13] During the following elongation phase, this nucleotidyl transfer reaction is repeated with subsequent NTPs to generate the complementary RNA product. Termination of the nascent RNA chain produced by RdRp is not completely known, however, RdRp termination is sequence-independent.[14]

One major drawback of RNA-dependent RNA polymerase replication is the transcription error rate.[13] RdRps lack fidelity on the order of 104 nucleotides, which is thought to be a direct result of inadequate proofreading.[13] This variation rate is favored in viral genomes as it allows for the pathogen to overcome host defenses trying to avoid infection, allowing for evolutionary growth.[15]

Structure

Overview of the flavivirus RdRp structure based on West Nile Virus (WNV) NS5Pol

Viral/prokaryotic RdRp, along with many single-subunit DdRp, employ a fold whose organization has been linked to the shape of a right hand with three subdomains termed fingers, palm, and thumb.[16] Only the palm subdomain, composed of a four-stranded antiparallel beta sheet with two alpha helices, is well conserved. In RdRp, the palm subdomain comprises three well-conserved motifs (A, B, and C). Motif A (D-x(4,5)-D) and motif C (GDD) are spatially juxtaposed; the aspartic acid residues of these motifs are implied in the binding of Mg2+ and/or Mn2+. The asparagine residue of motif B is involved in selection of ribonucleoside triphosphates over dNTPs and, thus, determines whether RNA rather than DNA is synthesized.[17] The domain organization[18] and the 3D structure of the catalytic centre of a wide range of RdRps, even those with a low overall sequence homology, are conserved. The catalytic center is formed by several motifs containing conserved amino acid residues.[citation needed]

Eukaryotic RNA interference requires a cellular RdRp (c RdRp). Unlike the "hand" polymerases, they resemble simplified multi-subunit DdRPs, specifically in the catalytic β/β' subunits, in that they use two sets of double-psi β-barrels in the active site. QDE1 (Q9Y7G6) in Neurospora crassa, which has both barrels in the same chain,[19] is an example of such a c RdRp enzyme.[20] Bacteriophage homologs of c RdRp, including the similarly single-chain DdRp yonO (O31945), appear to be closer to c RdRps than DdRPs are.[8][21]

RNA dependent RNA polymerase[a]
Identifiers
SymbolRdRP_1
PfamPF00680
Pfam clanCL0027
InterProIPR001205
SCOP22jlg / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
RNA-dependent RNA polymerase, eukaryotic-type
Identifiers
SymbolRdRP_euk
PfamPF05183
InterProIPR007855
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB2j7n
Bunyavirus RNA replicase[b]
Identifiers
SymbolBunya_RdRp
PfamPF04196
InterProIPR007322
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Viruses

Structure and evolution of RdRp in RNA viruses and their superfamilies

Four superfamilies of viruses cover all RNA-containing viruses with no DNA stage:

Flaviviruses produce a polyprotein from the ssRNA genome. The polyprotein is cleaved to a number of products, one of which is NS5, an RdRp. It possesses short regions and motifs homologous to other RdRps.[22]

RNA replicase found in positive-strand ssRNA viruses are related to each other, forming three large superfamilies.[23] Birnaviral RNA replicase is unique in that it lacks motif C (GDD) in the palm.[24] Mononegaviral RdRp (PDB 5A22) has been automatically classified as similar to (+)−ssRNA RdRps, specifically one from Pestivirus and one from Leviviridae.[25] Bunyaviral RdRp monomer (PDB 5AMQ) resembles the heterotrimeric complex of Orthomyxoviral (Influenza; PDB 4WSB) RdRp.[26]

Since it is a protein universal to RNA-containing viruses, RdRp is a useful marker for understanding their evolution.[27][28]

Recombination

When replicating its (+)ssRNA genome, the poliovirus RdRp is able to carry out recombination. Recombination appears to occur by a copy choice mechanism in which the RdRp switches (+)ssRNA templates during negative strand synthesis.[29] Recombination frequency is determined in part by the fidelity of RdRp replication.[30] RdRp variants with high replication fidelity show reduced recombination, and low fidelity RdRps exhibit increased recombination.[30] Recombination by RdRp strand switching occurs frequently during replication in the (+)ssRNA plant carmoviruses and tombusviruses.[31]

Intragenic complementation

Sendai virus (family Paramyxoviridae) has a linear, single-stranded, negative-sense, nonsegmented RNA genome. The viral RdRp consists of two virus-encoded subunits, a smaller one P and a larger one L. Testing different inactive RdRp mutants with defects throughout the length of the L subunit in pairwise combinations, restoration of viral RNA synthesis was observed in some combinations.[32] This positive L–L interaction is referred to as intragenic complementation and indicates that the L protein is an oligomer in the viral RNA polymerase complex.[citation needed]

Drug therapies

  • RdRps can be used as drug targets for viral pathogens as their function is not necessary for eukaryotic survival. By inhibiting RdRp function, new RNAs cannot be replicated from an RNA template strand, however, DNA-dependent RNA polymerase remains functional.
  • Some antiviral drugs against Hepatitis C and COVID-19 specifically target RdRp. These include Sofosbuvir and Ribavirin against Hepatitis C[33] and remdesivir, an FDA approved drug against COVID-
  • GS-441524 triphosphate is a substrate for RdRp, but not mammalian polymerases. It results in premature chain termination and inhibition of viral replication. GS-441524 triphosphate is the biologically active form of remdesivir. Remdesivir is classified as a nucleotide analog that inhibits RdRp function by covalently binding to and interrupting termination of the nascent RNA through early or delayed termination or preventing further elongation of the RNA polynucleotide.[34][35] This early termination leads to nonfunctional RNA that gets degraded through normal cellular processes.

RNA interference

The use of RdRp plays a major role in RNA interference in eukaryotes, a process used to silence gene expression via small interfering RNAs (siRNAs) binding to mRNA rendering them inactive.[36] Eukaryotic RdRp becomes active in the presence of dsRNA, and is less widely distributed than other RNAi components as it lost in some animals, though still found in C. elegans, P. tetraurelia,[37] and plants.[38] This presence of dsRNA triggers the activation of RdRp and RNAi processes by priming the initiation of RNA transcription through the introduction of siRNAs.[37] In C. elegans, siRNAs are integrated into the RNA-induced silencing complex, RISC, which works alongside mRNAs targeted for interference to recruit more RdRps to synthesize more secondary siRNAs and repress gene expression.[39]

See also

Notes

  1. ^ See Pfam clan for other (+)ssRNA/dsRNA families.
  2. ^ A (−)ssRNA polymerase.

References

  1. ^ Koonin EV, Gorbalenya AE, Chumakov KM (July 1989). "Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases". FEBS Letters. 252 (1–2): 42–46. doi:10.1016/0014-5793(89)80886-5. PMID 2759231. S2CID 36482110.
  2. ^ Zanotto PM, Gibbs MJ, Gould EA, Holmes EC (September 1996). "A reevaluation of the higher taxonomy of viruses based on RNA polymerases". Journal of Virology. 70 (9): 6083–6096. doi:10.1128/JVI.70.9.6083-6096.1996. PMC 190630. PMID 8709232.
  3. ^ Baltimore D, Franklin RM (October 1963). "A New Ribonucleic Acid Polymerase Appearing after Mengovirus Infection of L-Cells". The Journal of Biological Chemistry. 238 (10): 3395–3400. doi:10.1016/S0021-9258(18)48679-6. PMID 14085393.
  4. ^ Suttle CA (September 2005). "Viruses in the sea". Nature. 437 (7057): 356–361. Bibcode:2005Natur.437..356S. doi:10.1038/nature04160. PMID 16163346. S2CID 4370363.
  5. ^ Weiner AM (January 1988). "Eukaryotic nuclear telomeres: molecular fossils of the RNP world?". Cell. 52 (2): 155–158. doi:10.1016/0092-8674(88)90501-6. PMID 2449282. S2CID 11491076.
  6. ^ Dawkins R (1996). The Blind Watchmaker (PDF) (3d ed.). London: W.W. Norton&Company. p. 129. ISBN 978-0-393-35309-9.
  7. ^ Timm C, Gupta A, Yin J (August 2015). "Robust kinetics of an RNA virus: Transcription rates are set by genome levels". Biotechnology and Bioengineering. 112 (8): 1655–1662. doi:10.1002/bit.25578. PMC 5653219. PMID 25726926.
  8. ^ a b Iyer LM, Koonin EV, Aravind L (January 2003). "Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases". BMC Structural Biology. 3: 1. doi:10.1186/1472-6807-3-1. PMC 151600. PMID 12553882.
  9. ^ Tan FL, Yin JQ (December 2004). "RNAi, a new therapeutic strategy against viral infection". Cell Research. 14 (6): 460–466. doi:10.1038/sj.cr.7290248. PMC 7092015. PMID 15625012.
  10. ^ Zong J, Yao X, Yin J, Zhang D, Ma H (November 2009). "Evolution of the RNA-dependent RNA polymerase (RdRP) genes: duplications and possible losses before and after the divergence of major eukaryotic groups". Gene. 447 (1): 29–39. doi:10.1016/j.gene.2009.07.004. PMID 19616606.
  11. ^ a b c Wu J, Gong P (January 2018). "Visualizing the Nucleotide Addition Cycle of Viral RNA-Dependent RNA Polymerase". Viruses. 10 (1): 24. doi:10.3390/v10010024. PMC 5795437. PMID 29300357.
  12. ^ a b Shu B, Gong P (July 2016). "Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation". Proceedings of the National Academy of Sciences of the United States of America. 113 (28): E4005–E4014. Bibcode:2016PNAS..113E4005S. doi:10.1073/pnas.1602591113. PMC 4948327. PMID 27339134.
  13. ^ a b c d Venkataraman S, Prasad BV, Selvarajan R (February 2018). "RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution". Viruses. 10 (2): 76. doi:10.3390/v10020076. PMC 5850383. PMID 29439438.
  14. ^ Adkins S, Stawicki SS, Faurote G, Siegel RW, Kao CC (April 1998). "Mechanistic analysis of RNA synthesis by RNA-dependent RNA polymerase from two promoters reveals similarities to DNA-dependent RNA polymerase". RNA. 4 (4): 455–470. PMC 1369631. PMID 9630251.
  15. ^ Fitzsimmons WJ, Woods RJ, McCrone JT, Woodman A, Arnold JJ, Yennawar M, et al. (June 2018). "A speed-fidelity trade-off determines the mutation rate and virulence of an RNA virus". PLOS Biology. 16 (6): e2006459. doi:10.1371/journal.pbio.2006459. PMC 6040757. PMID 29953453.
  16. ^ Hansen JL, Long AM, Schultz SC (August 1997). "Structure of the RNA-dependent RNA polymerase of poliovirus". Structure. 5 (8): 1109–1122. doi:10.1016/S0969-2126(97)00261-X. PMID 9309225.
  17. ^ Gohara DW, Crotty S, Arnold JJ, Yoder JD, Andino R, Cameron CE (August 2000). "Poliovirus RNA-dependent RNA polymerase (3Dpol): structural, biochemical, and biological analysis of conserved structural motifs A and B". The Journal of Biological Chemistry. 275 (33): 25523–25532. doi:10.1074/jbc.M002671200. PMID 10827187.
  18. ^ O'Reilly EK, Kao CC (December 1998). "Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure". Virology. 252 (2): 287–303. doi:10.1006/viro.1998.9463. PMID 9878607.
  19. ^ Sauguet L (September 2019). "The Extended "Two-Barrel" Polymerases Superfamily: Structure, Function and Evolution". Journal of Molecular Biology. 431 (20): 4167–4183. doi:10.1016/j.jmb.2019.05.017. PMID 31103775.
  20. ^ Werner F, Grohmann D (February 2011). "Evolution of multisubunit RNA polymerases in the three domains of life". Nature Reviews. Microbiology. 9 (2): 85–98. doi:10.1038/nrmicro2507. PMID 21233849. S2CID 30004345.
  21. ^ Forrest D, James K, Yuzenkova Y, Zenkin N (June 2017). "Single-peptide DNA-dependent RNA polymerase homologous to multi-subunit RNA polymerase". Nature Communications. 8: 15774. Bibcode:2017NatCo...815774F. doi:10.1038/ncomms15774. PMC 5467207. PMID 28585540.
  22. ^ Tan BH, Fu J, Sugrue RJ, Yap EH, Chan YC, Tan YH (February 1996). "Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity". Virology. 216 (2): 317–325. doi:10.1006/viro.1996.0067. PMID 8607261.
  23. ^ Koonin EV (September 1991). "The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses". The Journal of General Virology. 72 ( Pt 9) (9): 2197–2206. doi:10.1099/0022-1317-72-9-2197. PMID 1895057.
  24. ^ Shwed PS, Dobos P, Cameron LA, Vakharia VN, Duncan R (May 2002). "Birnavirus VP1 proteins form a distinct subgroup of RNA-dependent RNA polymerases lacking a GDD motif". Virology. 296 (2): 241–250. doi:10.1006/viro.2001.1334. PMID 12069523.
  25. ^ Structural Similarities for the Entities in PDB 5A22 Archived 2019-04-03 at the Wayback Machine.
  26. ^ Gerlach P, Malet H, Cusack S, Reguera J (June 2015). "Structural Insights into Bunyavirus Replication and Its Regulation by the vRNA Promoter". Cell. 161 (6): 1267–1279. doi:10.1016/j.cell.2015.05.006. PMC 4459711. PMID 26004069.
  27. ^ Wolf YI, Kazlauskas D, Iranzo J, Lucía-Sanz A, Kuhn JH, Krupovic M, et al. (November 2018). "Origins and Evolution of the Global RNA Virome". mBio. 9 (6). doi:10.1128/mBio.02329-18. PMC 6282212. PMID 30482837.
  28. ^ Černý J, Černá Bolfíková B, Valdés JJ, Grubhoffer L, Růžek D (2014). "Evolution of tertiary structure of viral RNA dependent polymerases". PLOS ONE. 9 (5): e96070. Bibcode:2014PLoSO...996070C. doi:10.1371/journal.pone.0096070. PMC 4015915. PMID 24816789.
  29. ^ Kirkegaard K, Baltimore D (November 1986). "The mechanism of RNA recombination in poliovirus". Cell. 47 (3): 433–443. doi:10.1016/0092-8674(86)90600-8. PMC 7133339. PMID 3021340.
  30. ^ a b Woodman A, Arnold JJ, Cameron CE, Evans DJ (August 2016). "Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination". Nucleic Acids Research. 44 (14): 6883–6895. doi:10.1093/nar/gkw567. PMC 5001610. PMID 27317698.
  31. ^ Cheng CP, Nagy PD (November 2003). "Mechanism of RNA recombination in carmo- and tombusviruses: evidence for template switching by the RNA-dependent RNA polymerase in vitro". Journal of Virology. 77 (22): 12033–12047. doi:10.1128/jvi.77.22.12033-12047.2003. PMC 254248. PMID 14581540.
  32. ^ Smallwood S, Cevik B, Moyer SA (December 2002). "Intragenic complementation and oligomerization of the L subunit of the sendai virus RNA polymerase". Virology. 304 (2): 235–245. doi:10.1006/viro.2002.1720. PMID 12504565.
  33. ^ Waheed Y, Bhatti A, Ashraf M (March 2013). "RNA dependent RNA polymerase of HCV: a potential target for the development of antiviral drugs". Infection, Genetics and Evolution. 14: 247–257. doi:10.1016/j.meegid.2012.12.004. PMID 23291407.
  34. ^ Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, et al. (June 2020). "Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir". Science. 368 (6498): 1499–1504. Bibcode:2020Sci...368.1499Y. doi:10.1126/science.abc1560. PMC 7199908. PMID 32358203.
  35. ^ Malin JJ, Suárez I, Priesner V, Fätkenheuer G, Rybniker J (December 2020). "Remdesivir against COVID-19 and Other Viral Diseases". Clinical Microbiology Reviews. 34 (1). doi:10.1128/CMR.00162-20. PMC 7566896. PMID 33055231.
  36. ^ Simaan JA, Aviado DM (November 1975). "Hemodynamic effects of aerosol propellants. II. Pulmonary circulation in the dog". Toxicology. 5 (2): 139–146. doi:10.1016/0300-483x(75)90110-9. PMID 1873.
  37. ^ a b Marker S, Le Mouël A, Meyer E, Simon M (July 2010). "Distinct RNA-dependent RNA polymerases are required for RNAi triggered by double-stranded RNA versus truncated transgenes in Paramecium tetraurelia". Nucleic Acids Research. 38 (12): 4092–4107. doi:10.1093/nar/gkq131. PMC 2896523. PMID 20200046.
  38. ^ Willmann MR, Endres MW, Cook RT, Gregory BD (July 2011). "The Functions of RNA-Dependent RNA Polymerases in Arabidopsis". The Arabidopsis Book. 9: e0146. doi:10.1199/tab.0146. PMC 3268507. PMID 22303271.
  39. ^ Zhang C, Ruvkun G (August 2012). "New insights into siRNA amplification and RNAi". RNA Biology. 9 (8): 1045–1049. doi:10.4161/rna.21246. PMC 3551858. PMID 22858672.

External links

This article incorporates text from the public domain Pfam and InterPro: IPR000208

Read other articles:

GantzSutradara Shinsuke Kato Produser Takahiro Sato Ditulis oleh Yūsuke Watanabe SkenarioYūsuke WatanabeBerdasarkanGantzoleh Hiroya OkuPemeranKazunari NinomiyaKenichi MatsuyamaYuriko YoshitakaTanggal rilisGantz: 29 Januari 2011 (2011-01-29) (Jepang) Another Gantz: 22 April 2011 (2011-04-22) (Jepang) Gantz: Perfect Answer: 23 April 2011 (2011-04-23) (Jepang) Negara Jepang Bahasa Jepang Anggaran2,1 milyar yen (total)[1]Pendapatankotor7,4 milyar yen (total)[…

Косплей участника San Diego Comic-Con International 2012 года Любая достаточно развитая технология неотличима от магии.Артур Кларк[1] Технофэнтези (англ. Technofantasy, Technomancy) — специфический жанр фантастики[2], поджанр фэнтези, описывающий миры, где технологические достижения с

Ashley Collier Data urodzenia 4 lutego 1992 Dorobek medalowy Reprezentacja  Stany Zjednoczone Mistrzostwa świata juniorów złoto Moncton 2010 sztafeta 4 × 100 metrów Ashley Collier (ur. 4 lutego 1992) – amerykańska lekkoatletka specjalizująca się w biegach sprinterskich. W 2010 zdobyła złoto mistrzostw świata juniorów w sztafecie 4 × 100 metrów. Medalistka mistrzostw NCAA. Osiągnięcia Rok Impreza Miejsce Konkurencja Lokata Wynik 2010 Mistrzostwa świata juniorów Moncton sz…

This article is about the Czech brand of beer. For the defunct U.S. brewery, see Gambrinus Brewing Co. Brand of beer brewed in the Czech Republic This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gambrinus beer – news · newspapers · books · scholar · JSTOR (July 2009) (Learn how and when to remove this templ…

Цю статтю треба вікіфікувати для відповідності стандартам якості Вікіпедії. Будь ласка, допоможіть додаванням доречних внутрішніх посилань або вдосконаленням розмітки статті. (Липень 2009) Кінгстон (Ямайка) Сучасна Ямайка — слабкорозвинута економічно залежна країна.…

Bermondsey Barrio Iglesia de Santa María Magdalena en Bermondsey BermondseyUbicación de Bermondsey en el Gran Londres.Coordenadas 51°29′55″N 0°04′33″O / 51.4986, -0.0757Entidad Barrio • País  Reino Unido • Nación constitutiva Inglaterra Inglaterra • Región y condado Gran Londres • Municipio londinense Southwark[editar datos en Wikidata] Bermondsey es un barrio del municipio londinense de Southwark. Se encuentra a unos…

Das Ökosystem See gehört zu den limnischen Ökosystemen, die von stehenden Gewässern gebildet werden. Die folgenden Betrachtungen beziehen sich auf einen Süßwassersee in der gemäßigten Klimazone, ein stehendes Gewässer ohne direkten Abfluss zum Meer, das mehr als 10 Meter tief ist und dessen Verdunstungsrate sowie Zu- und Abflussmenge gegenüber der gesamten Wassermenge gering ist (vgl. Gewässer#Gewässertypen). Inhaltsverzeichnis 1 Vertikale Gliederung 1.1 Lebensgemeinschaften der einz…

French sports newspaper For other uses, see Équipe (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: L'Équipe – news · newspapers · books · scholar · JSTOR (July 2008) (Learn how and when to remove this template message) L'ÉquipeThe front page of L'Équipe on 4 July 2011TypeDaily newspaperFor…

Ini adalah nama Melayu; nama Maslan merupakan patronimik, bukan nama keluarga, dan tokoh ini dipanggil menggunakan nama depannya, Ahmad. Kata bin (b.) atau binti (bt.), jika digunakan, berarti putra dari atau putri dari. Yang Berhormat Datuk Seri HajiAhmad MaslanSMW DMSM APاحمد مسلنWakil Menteri Keuangan I MalaysiaPetahanaMulai menjabat 10 Desember 2022Menjabat bersama Steven SimPerdana MenteriAnwar IbrahimMenteriAnwar IbrahimPendahuluMohd Shahar AbdullahMasa jabatan16 Mei 20…

18th-century Chinese pirate In this Chinese name, the family name is Cheng. Zheng Qi鄭七BornZheng Yaohuang (鄭耀煌)1760 (1760)Xin'an County, Guangdong, Qing ChinaDied1802 (aged 41–42)Nguyễn VietnamCause of deathexecutionSpouseunknownChildrenZheng Baoyang (son) Zheng Weifeng (son)Parent(s)Zheng Lianfu (father) Lin Xiu (mother)RelativesZheng Yaori (brother) Zheng Yaoyue (brother) Zheng Yaoxing (brother) Zheng Yaoming (brother) Zheng Yaohuang (brother) Zheng Yaozhen (bro…

Millburn Downtown Millburn, vom South Mountain Reservation Lage in New Jersey Basisdaten Gründung: 20. März 1857 Staat: Vereinigte Staaten Bundesstaat: New Jersey County: Essex County Koordinaten: 40° 44′ N, 74° 19′ W40.733888888889-74.32027777777893Koordinaten: 40° 44′ N, 74° 19′ W Zeitzone: Eastern (UTC−5/−4) Einwohner: 21.710 (Stand: 2020) Haushalte: 6.730 (Stand: 2020) Fläche: 25,6 km² (ca. 10 mi²)davo…

Suzuki PaletteInformasiProdusenSuzukiJuga disebutMazda Flair WagonNissan RooxMasa produksi2008- Februari 2013Bodi & rangkaKelasmobil keiBentuk kerangka5-door hatchbackTata letakFF4WDMobil terkaitSuzuki Wagon RPenyalur dayaMesin658 cc bensinTransmisi4-speed automaticCVTDimensiJarak sumbu roda2.400 mmPanjang3.395 mmLebar1.475 mmTinggi1.735 mmBerat kosong900-990 kgKronologiPenerusSuzuki Spacia Suzuki Palette adalah mobil kecil yang diproduksi oleh Suzuki dari Januari 2008 sampai …

72e cérémonie des Oscars Oscars du cinéma Organisé par l'Academy of Motion Picture Arts and Sciences Détails Date 26 mars 2000 Lieu Shrine Auditorium, Los Angeles États-Unis Présentateur Billy Crystal Diffusé sur ABC Site web http://oscar.go.com/ Résumé Meilleur film American Beauty Meilleur film étranger Tout sur ma mère Espagne Film le plus nommé American Beauty (8) Film le plus récompensé American Beauty (5) Chronologie 71e cérémonie des Oscars 73e cérémonie …

Peta wilayah Komune Palma di Montechiaro (merah) di Provinsi Agrigento (emas), Sisilia, Italia. Palma di Montechiaro adalah komune yang terletak di distrik Provinsi Agrigento, Italia. Kota Palma di Montechiaro memiliki luas sebesar 76 km². Palma di Montechiaro pada tahun 2001, memiliki penduduk sebanyak 21,533 jiwa. Referensi lbsKomune di Provinsi Agrigento Agrigento Alessandria della Rocca Aragona Bivona Burgio Calamonaci Caltabellotta Camastra Cammarata Campobello di Licata Canicattì Ca…

北海道の超高層建築物の一覧(ほっかいどうのちょうこうそうけんちくぶつのいちらん)は、北海道にある高さ100m以上[注 1]の超高層建築物の一覧である。 概説 北海道で最も高い建築物は札幌市にあるJRタワー(高さ173.0m、38階建て)である。 北海道の超高層建築物は道庁所在地であり、政令指定都市である札幌市に集中している。 札幌駅に、高さ236mの超高層ビル…

Berikut adalah daftar 262 komune di département Yvelines di Prancis. (CAM) Communauté d'agglomération de Mantes en Yvelines, dibentuk tahun 2000. (CAS) Communauté d'agglomération de Saint-Quentin-en-Yvelines, dibentuk tahun 2004. Kode INSEE Kode pos Komune 78003 78660 Ablis 78005 78260 Achères 78006 78113 Adainville 78007 78240 Aigremont 78009 78660 Allainville 78010 78580 Les Alluets-le-Roi 78013 78770 Andelu 78015 78570 Andrésy 78020 78790 Arnouville-lès-Mantes 78029 78410 Aubergenvill…

Clarinet keywork system developed circa 1840 Boehm Clarinet with 17 keys and 6 ringsFull-Boehm clarinet, range to E flat, with 20 keys, 7 rings and left E-flat-lever The Boehm system for the clarinet is a system of clarinet keywork, developed between 1839 and 1843 by Hyacinthe Klosé and Auguste Buffet jeune. The name is somewhat deceptive; the system was inspired by Theobald Boehm's system for the flute, but necessarily differs from it, since the clarinet overblows at the twelfth rather than th…

Suku Kemak di sebuah pasar di Atsabe, Timor Leste sekitar tahun 1968–1970. Suku Kemak (Portugis: Quémaque, juga disebut Ema) adalah sebuah suku yang menghuni wilayah utara dan tengah pulau Timor. Persebaran suku Kemak di dua negara, yaitu Indonesia dan Timor Leste. Di Indonesia, suku Kemak tersebar di Kabupaten Belu, Timor Barat, Nusa Tenggara Timur, Indonesia. Sedangkan di Timor Leste, suku Kemak utamanya tersebar di Distrik Bobonaro dan Distrik Ermera. Suku Kemak mempertuturkan bahasa K…

尼泊尔联邦民主共和国सङ्घीय लोकतान्त्रिक गणतन्त्र नेपाल(尼泊尔语) 国旗 国徽 格言:जननी जन्मभूमिश्च स्वर्गादपि गरीयसी(梵語)“母亲与祖国胜于天堂”国歌:सयौं थुँगा फूलका हामी 《唯一百花盛开的国度》首都及最大城市加德满都官方语言尼泊爾语[1]族群卡斯人、尼…

English actress Shelley ConnConn on the set of Heartbeat in 2016BornShelley Deborah Conn (1976-09-21) 21 September 1976 (age 47)Barnet, North London, EnglandEducationWebber Douglas Academy of Dramatic Art (BA)OccupationActressYears active2000–presentSpouse Jonathan Kerrigan ​(m. 2011)​Children1 Shelley Deborah Conn (born 21 September 1976) is an English actress. She is perhaps best known for her roles as Lady Mary Sharma in Bridgerton, as Isabella in the …

Kembali kehalaman sebelumnya