The small cubicuboctahedron is a faceting of the rhombicuboctahedron. Its square faces and its octagonal faces are parallel to those of a cube, while its triangular faces are parallel to those of an octahedron: hence the name cubicuboctahedron. The small suffix serves to distinguish it from the great cubicuboctahedron, which also has faces in the aforementioned directions.[2]
As the Euler characteristic suggests, the small cubicuboctahedron is a toroidal polyhedron of genus 3 (topologically it is a surface of genus 3), and thus can be interpreted as a (polyhedral) immersion of a genus 3 polyhedral surface, in the complement of its 24 vertices, into 3-space. (A neighborhood of any vertex is topologically a cone on a figure-8, which cannot occur in an immersion. Note that the Richter reference overlooks this fact.) The underlying polyhedron (ignoring self-intersections) defines a uniform tiling of this surface, and so the small cubicuboctahedron is a uniform polyhedron. In the language of abstract polytopes, the small cubicuboctahedron is a faithful realization of this abstract toroidal polyhedron, meaning that it is a nondegenerate polyhedron and that they have the same symmetry group. In fact, every automorphism of the abstract genus 3 surface with this tiling is realized by an isometry of Euclidean space.
Alternatively and more subtly, by chopping up each square face into 2 triangles and each octagonal face into 6 triangles, the small cubicuboctahedron can be interpreted as a non-regular coloring of the combinatorially regular (not just uniform) tiling of the genus 3 surface by 56 equilateral triangles, meeting at 24 vertices, each with degree 7.[3] This regular tiling is significant as it is a tiling of the Klein quartic, the genus 3 surface with the most symmetric metric (automorphisms of this tiling equal isometries of the surface), and the orientation-preseserving automorphism group of this surface is isomorphic to the projective special linear group PSL(2,7), equivalently GL(3,2) (the order 168 group of all orientation-preserving isometries). Note that the small cubicuboctahedron is not a realization of this abstract polyhedron, as it only has 24 orientation-preserving symmetries (not every abstract automorphism is realized by a Euclidean isometry) – the isometries of the small cubicuboctahedron preserve not only the triangular tiling, but also the coloring, and hence are a proper subgroup of the full isometry group.
The corresponding tiling of the hyperbolic plane (the universal covering) is the order-7 triangular tiling. The automorphism group of the Klein quartic can be augmented (by a symmetry which is not realized by a symmetry of the polyhedron, namely "exchanging the two endpoints of the edges that bisect the squares and octahedra) to yield the Mathieu group M24.[4]
^ ab(Richter) Note each face in the polyhedron consist of multiple faces in the tiling, hence the description as a "coloring" – two triangular faces constitute a square face and so forth, as per this explanatory image.