Given the space with the Zariski topology, the structure sheaf is defined on the distinguished open subsets by setting the localization of by the powers of . It can be shown that this defines a B-sheaf and therefore that it defines a sheaf. In more detail, the distinguished open subsets are a basis of the Zariski topology, so for an arbitrary open set , written as the union of , we set where denotes the inverse limit with respect to the natural ring homomorphisms One may check that this presheaf is a sheaf, so is a ringed space. Any ringed space isomorphic to one of this form is called an affine scheme. General schemes are obtained by gluing affine schemes together.
Similarly, for a module over the ring , we may define a sheaf on . On the distinguished open subsets set using the localization of a module. As above, this construction extends to a presheaf on all open subsets of and satisfies the gluing axiom. A sheaf of this form is called a quasicoherent sheaf.
If is a point in , that is, a prime ideal, then the stalk of the structure sheaf at equals the localization of at the ideal , which is generally denoted , and this is a local ring. Consequently, is a locally ringed space.
If is an integral domain, with field of fractions, then we can describe the ring more concretely as follows. We say that an element in is regular at a point in if it can be represented as a fraction with . Note that this agrees with the notion of a regular function in algebraic geometry. Using this definition, we can describe as precisely the set of elements of that are regular at every point in .
of local rings. Thus even defines a contravariant functor from the category of commutative rings to the category of locally ringed spaces. In fact it is the universal such functor, and hence can be used to define the functor up to natural isomorphism.[citation needed]
Following on from the example, in algebraic geometry one studies algebraic sets, i.e. subsets of (where is an algebraically closed field) that are defined as the common zeros of a set of polynomials in variables. If is such an algebraic set, one considers the commutative ring of all polynomial functions. The maximal ideals of correspond to the points of (because is algebraically closed), and the prime ideals of correspond to the subvarieties of (an algebraic set is called irreducible or a variety if it cannot be written as the union of two proper algebraic subsets).
The spectrum of therefore consists of the points of together with elements for all subvarieties of . The points of are closed in the spectrum, while the elements corresponding to subvarieties have a closure consisting of all their points and subvarieties. If one only considers the points of , i.e. the maximal ideals in , then the Zariski topology defined above coincides with the Zariski topology defined on algebraic sets (which has precisely the algebraic subsets as closed sets). Specifically, the maximal ideals in , i.e. , together with the Zariski topology, is homeomorphic to also with the Zariski topology.
One can thus view the topological space as an "enrichment" of the topological space (with Zariski topology): for every subvariety of , one additional non-closed point has been introduced, and this point "keeps track" of the corresponding subvariety. One thinks of this point as the generic point for the subvariety. Furthermore, the structure sheaf on and the sheaf of polynomial functions on are essentially identical. By studying spectra of polynomial rings instead of algebraic sets with Zariski topology, one can generalize the concepts of algebraic geometry to non-algebraically closed fields and beyond, eventually arriving at the language of schemes.
Examples
The spectrum of integers: The affine scheme is the final object in the category of affine schemes since is the initial object in the category of commutative rings.
The scheme-theoretic analogue of : The affine scheme . From the functor of points perspective, a point can be identified with the evaluation morphism . This fundamental observation allows us to give meaning to other affine schemes.
The cross: looks topologically like the transverse intersection of two complex planes at a point, although typically this is depicted as a , since the only well defined morphisms to are the evaluation morphisms associated with the points .
Here are some examples of schemes that are not affine schemes. They are constructed from gluing affine schemes together.
The projective -space over a field . This can be easily generalized to any base ring, see Proj construction (in fact, we can define projective space for any base scheme). The projective -space for is not affine as the global section of is .
Affine plane minus the origin.[6] Inside are distinguished open affine subschemes . Their union is the affine plane with the origin taken out. The global sections of are pairs of polynomials on that restrict to the same polynomial on , which can be shown to be , the global section of . is not affine as in .
Non-Zariski topologies on a prime spectrum
This section needs expansion. You can help by adding to it. (June 2020)
Some authors (notably M. Hochster) consider topologies on prime spectra other than the Zariski topology.
First, there is the notion of constructible topology: given a ring A, the subsets of of the form satisfy the axioms for closed sets in a topological space. This topology on is called the constructible topology.[7][8]
In Hochster (1969), Hochster considers what he calls the patch topology on a prime spectrum.[9][10][11] By definition, the patch topology is the smallest topology in which the sets of the forms and are closed.
Global or relative Spec
There is a relative version of the functor called global , or relative . If is a scheme, then relative is denoted by or . If is clear from the context, then relative Spec may be denoted by or . For a scheme and a quasi-coherentsheaf of -algebras, there is a scheme and a morphism such that for every open affine , there is an isomorphism , and such that for open affines , the inclusion is induced by the restriction map . That is, as ring homomorphisms induce opposite maps of spectra, the restriction maps of a sheaf of algebras induce the inclusion maps of the spectra that make up the Spec of the sheaf.
Global Spec has a universal property similar to the universal property for ordinary Spec. More precisely, just as Spec and the global section functor are contravariant right adjoints between the category of commutative rings and schemes, global Spec and the direct image functor for the structure map are contravariant right adjoints between the category of commutative -algebras and schemes over .[dubious – discuss] In formulas,
where is a morphism of schemes.
Example of a relative Spec
The relative spec is the correct tool for parameterizing the family of lines through the origin of over Consider the sheaf of algebras and let be a sheaf of ideals of Then the relative spec parameterizes the desired family. In fact, the fiber over is the line through the origin of containing the point Assuming the fiber can be computed by looking at the composition of pullback diagrams
where the composition of the bottom arrows
gives the line containing the point and the origin. This example can be generalized to parameterize the family of lines through the origin of over by letting and
Representation theory perspective
From the perspective of representation theory, a prime ideal I corresponds to a module R/I, and the spectrum of a ring corresponds to irreducible cyclic representations of R, while more general subvarieties correspond to possibly reducible representations that need not be cyclic. Recall that abstractly, the representation theory of a group is the study of modules over its group algebra.
The connection to representation theory is clearer if one considers the polynomial ring or, without a basis, As the latter formulation makes clear, a polynomial ring is the group algebra over a vector space, and writing in terms of corresponds to choosing a basis for the vector space. Then an ideal I, or equivalently a module is a cyclic representation of R (cyclic meaning generated by 1 element as an R-module; this generalizes 1-dimensional representations).
In the case that the field is algebraically closed (say, the complex numbers), every maximal ideal corresponds to a point in n-space, by the Nullstellensatz (the maximal ideal generated by corresponds to the point ). These representations of are then parametrized by the dual space the covector being given by sending each to the corresponding . Thus a representation of (K-linear maps ) is given by a set of n numbers, or equivalently a covector
Thus, points in n-space, thought of as the max spec of correspond precisely to 1-dimensional representations of R, while finite sets of points correspond to finite-dimensional representations (which are reducible, corresponding geometrically to being a union, and algebraically to not being a prime ideal). The non-maximal ideals then correspond to infinite-dimensional representations.
Further, the geometric structure of the spectrum of the ring (equivalently, the algebraic structure of the module) captures the behavior of the spectrum of the operator, such as algebraic multiplicity and geometric multiplicity. For instance, for the 2×2 identity matrix has corresponding module:
the 2×2 zero matrix has module
showing geometric multiplicity 2 for the zero eigenvalue,
while a non-trivial 2×2 nilpotent matrix has module
showing algebraic multiplicity 2 but geometric multiplicity 1.
In more detail:
the eigenvalues (with geometric multiplicity) of the operator correspond to the (reduced) points of the variety, with multiplicity;
the primary decomposition of the module corresponds to the unreduced points of the variety;
a diagonalizable (semisimple) operator corresponds to a reduced variety;
a cyclic module (one generator) corresponds to the operator having a cyclic vector (a vector whose orbit under T spans the space);
The spectrum can be generalized from rings to C*-algebras in operator theory, yielding the notion of the spectrum of a C*-algebra. Notably, for a Hausdorff space, the algebra of scalars (the bounded continuous functions on the space, being analogous to regular functions) is a commutative C*-algebra, with the space being recovered as a topological space from of the algebra of scalars, indeed functorially so; this is the content of the Banach–Stone theorem. Indeed, any commutative C*-algebra can be realized as the algebra of scalars of a Hausdorff space in this way, yielding the same correspondence as between a ring and its spectrum. Generalizing to non-commutative C*-algebras yields noncommutative topology.
Quema de la embajada de España en GuatemalaLocalizaciónPaís GuatemalaLugar Embajada de España ,Ciudad de Guatemala,Guatemala Datos generalesTipo terrorismo de EstadoSuceso Matanza de la embajada española en GuatemalaParticipantes Víctimas:personal de la embajada española en Guatemala,Eduardo Cáceres Lehnhoff (exvicepresidente de Guatemala),Adolfo Molina Orantes (excanciller de Guatemala),estudiantes universitarios,guerrilleros de la región de Quiché, que tomaron la Embajada.Hist
Helmstedt Gemeente in Duitsland Situering Deelstaat Nedersaksen Landkreis Helmstedt Coördinaten 52° 14′ NB, 11° 1′ OL Algemeen Oppervlakte 66,74 km² Inwoners (31-12-2020[1]) 25.544 (383 inw./km²) Hoogte 123 m Burgemeester Wittich Schobert (CDU) Overig Postcode 38350 Netnummers 05351, 05356 Kenteken HE Gemeentekernen 4 stadsdelen Gemeentenr. 03 1 54 028 Website stadt-helmstedt.de Locatie van Helmstedt in Helmstedt Foto's Het raadhuis van Helmstedt Portaal ...
Ibrani 10Sebagian naskah Papirus 13, yang memuat Surat Ibrani 2:14-5:5; 10:8-22; 10:29-11:13; 11:28-12:17, dibuat sekitar tahun 225-250 M.KitabSurat IbraniKategoriSurat-surat Paulus/Surat-surat AmBagian Alkitab KristenPerjanjian BaruUrutan dalamKitab Kristen19← pasal 9 pasal 11 → Ibrani 10 (disingkat Ibr 10) adalah bagian dari Surat kepada Orang Ibrani dalam Perjanjian Baru di Alkitab Kristen.[1][2] Tidak diketahui pengarangnya, selain dari informasi bahwa ia seora...
1992 single by Vince GillDon't Let Our Love Start Slippin' AwaySingle by Vince Gillfrom the album I Still Believe in You B-sideLove Never Broke Anyone's HeartReleasedOctober 12, 1992Recorded1992GenreCountryLength3:43LabelMCASongwriter(s)Vince Gill, Pete WasnerProducer(s)Tony BrownVince Gill singles chronology I Still Believe in You (1992) Don't Let Our Love Start Slippin' Away (1992) The Heart Won't Lie (1993) Don't Let Our Love Start Slippin' Away is a song co-written and recorded by America...
У Вікіпедії є статті про інші фільми з такою ж, або схожою назвою: Білий шейх. Білий шейхітал. Lo sceicco bianco Італійський постер до фільмуЖанр драмаРежисер Федеріко ФеллініПродюсер Луїджі РовереСценаристи Федеріко ФеллініТулліо ПінелліЕнніо ФлайаноМікеланджело АнтоніоніУ г
Halaman ini berisi artikel tentang penyatuan tahun 1871. Untuk penyatuan Jerman Barat dan Timur tahun 1990, lihat Penyatuan kembali Jerman. Kekaisaran Jerman 1871–1918. Wilayah Kekaisaran Austria yang berbahasa Jerman tidak termasuk, sehingga negara ini mewakili solusi Jerman kecil (Kleindeutsch). Penyatuan Jerman menjadi negara yang terintegrasi secara politik dan administratif secara resmi berlangsung pada 18 Januari 1871 di Balai Cermin Istana Versailles di Prancis. Pangeran-pangeran neg...
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Sastra Jawa – berita · surat kabar · buku · cendekiawan · JSTOR Sastra Jawa secara global bisa dibagi menjadi dua kategori yaitu yang ditulis dalam bentuk prosa atau puisi. Dalam bentuk prosa biasanya disebut...
Makam Umberto I Humbert I (bahasa Italia: Umberto I; skt. 980 – 1042 atau 1047 x 1048), lebih dikenal sebagai Humbert yang Bertangan Putih (Prancis: Humbert aux blanches-mains) atau Humbert Whitehand (bahasa Italia: Umberto Biancamano)[2]merupakan seorang pendiri Wangsa Savoia. Pengabdiannya kepada kaisar Jerman Heinrich II dan Konrad II dihargai dengan wilayah Maurienne dan Aosta dan wilayah di Valais, yang seluruhnya dengan biaya uskup setempat dan uskup agu...
Peta infrastruktur dan tata guna lahan di Komune Faucompierre. = Kawasan perkotaan = Lahan subur = Padang rumput = Lahan pertanaman campuran = Hutan = Vegetasi perdu = Lahan basah = Anak sungaiFaucompierre merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE Diarsipkan 2007-11-24 di Wayback Machine. lbsKomune di departemen Vosges Les Ableuvenettes Ahév...
Mosque in Dunhuang, Gansu, China Dunhuang Mosque敦煌清真寺ReligionAffiliationIslamBranch/traditionSunniLocationLocationDunhuang, Gansu, ChinaShown within GansuGeographic coordinates40°8′19.6″N 94°40′5.4″E / 40.138778°N 94.668167°E / 40.138778; 94.668167ArchitectureTypemosqueCapacity100 worshipers The Dunhuang Mosque (Chinese: 敦煌清真寺; pinyin: Dūnhuáng Qīngzhēnsì) is a mosque in Dunhuang City, Gansu Province, China. History The mosq...
Saul Friedländer, 2010 Saul Friedländer (eigentl. Pavel Friedländer, hebräisch שאול פרידלנדר; * 11. Oktober 1932 in Prag) ist ein israelischer Historiker und Autor. Inhaltsverzeichnis 1 Kindheit und Jugend 2 Studium und Lehrtätigkeit 3 Werk 4 Auszeichnungen (Auswahl) 5 Werke (Auswahl) 6 Literatur 7 Weblinks 8 Einzelnachweise Kindheit und Jugend Saul Friedländer wurde 1932 als Pavel Friedländer als Kind einer deutschsprachigen jüdischen Familie in Prag geboren. Sein Vater J...
Crimes da Rua do Arvoredo Local do crime Centro, Porto Alegre, RS Brasil Data 1864, século XIX Vítimas José Ignacio de Souza ÁvilasJanuário Martins Ramos da SilvasCarlos Claussner Réu(s) José RamosCatarina Palse Juiz Dario Rafael Callado Local do julgamento Porto Alegre Situação José Ramos, condenado às penas do crime de latrocínio, sendo condenado à pena de morte por enforcamento pelos seus crimes (depois comutada à prisão perpétua)Catarina Palse, presa como cúmplice, c...
This article needs to be updated. Please help update this article to reflect recent events or newly available information. (February 2022) Late December 2021 Bahia floodsDate24 December 2021 – early 2022LocationBahia, BrazilTypeFloodOutcomeState of emergency declared in 72 municipalities at Bahia[1]Deaths21[2]Non-fatal injuries280+[3]Displacedover 35,000 [4] Beginning on 24 December 2021, record rainfall across the northeastern Brazilian state Bahia have resu...
Antiochus I TheosAntiochus I dari Commagene, berjabatan tangan dengan Herakles, 70–38 SM, ArsameiaRaja CommageneBerkuasa70 SM – 38 SM(32 tahun)PendahuluMithridates I CallinicusPenerusMithridates IIInformasi pribadiKelahiranskt. 86 SMKematian38 SMPemakamanGunung NemrutWangsaWangsa OrontidNama lengkapAntiochus I Theos Dikaios Epiphanes Philorhomaios PhilhellenosAyahRaja Mithridates I Callinicus dari CommageneIbuPutri Laodice VII Thea dari KekaisaranPasanganPutri Isi...
Private, college-preparatory school in Nashville, Tennessee, United StatesHarpeth Hall SchoolAddress3801 Hobbs Road, Green HillsNashville, Tennessee 37215United StatesCoordinates36°6′3.07″N 86°50′24.79″W / 36.1008528°N 86.8402194°W / 36.1008528; -86.8402194InformationFormer nameWard Belmont SeminaryTypePrivate, college-preparatory schoolMottoLatin: Mentem spiritumque tollamus(Let us lift up the mind and spirit)Established1951 (1951) (Ward Seminary: 186...
Restaurant in zuid Holland, NetherlandsNivenRestaurant informationEstablished11 May 2009[1]Closed1 April 2020[2]Head chefNiven KunzFood typeFrenchRating Michelin GuideStreet addressDelftweg 58-aCityRijswijkCountyHollandStatezuid HollandPostal/ZIP Code2289 ALCountryNetherlandsSeating capacity60WebsiteOfficial website Niven is a restaurant in Rijswijk, Netherlands. It is a fine dining restaurant that is awarded one Michelin star in the period 2011–present.[3][4]...
Village in Dibër, AlbaniaHerebel ЕрбелеVillageHerebelCoordinates: 41°37′11″N 20°28′11″E / 41.61972°N 20.46972°E / 41.61972; 20.46972Country AlbaniaCountyDibërMunicipalityDibërMunicipal unitMaqellarëTime zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST) Herebel (Macedonian: Ербеле; Bulgarian: Ърбеле) is a village in the former Maqellarë municipality in Dibër County in northeastern Albania.[1] At the 2015 local govern...
American mass murderer (1951–2021) Ronald DeFeo Jr.DeFeo's mug shot, November 14, 1974BornRonald Joseph DeFeo Jr.(1951-09-26)September 26, 1951Brooklyn, New York,[1] U.S.DiedMarch 12, 2021(2021-03-12) (aged 69)Albany, New York, U.S.Other namesButchConviction(s)Second-degree murder (6 counts)Criminal penalty25 years to life in prisonDetailsDateNovember 13, 1974Target(s)His familyKilled6Weapons.35 Marlin rifle Ronald Joseph DeFeo Jr. (September 26, 1951 – March 12, 20...
Law enforcement agency in Ohio, U.S. This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: incorrect information. Please help improve this article if you can. (November 2015) (Learn how and when to remove this template message) City of Cincinnati Police DepartmentPatch of the Cincinnati Police DepartmentFlag of the City of CincinnatiCommon nameCincinnati Police DepartmentAbbreviationCPDAgency overviewFormed1859Jurisdictional structureOperations ...