It is important to get the integer sort size used in the recursive calls by rounding the 2/3 upwards, e.g. rounding 2/3 of 5 should give 4 rather than 3, as otherwise the sort can fail on certain data.
function stoogesort(array L, i = 0, j = length(L)-1){
if L[i] > L[j] then // If the leftmost element is larger than the rightmost element
swap(L[i],L[j]) // Then swap them
if (j - i + 1) > 2 then // If there are at least 3 elements in the array
t = floor((j - i + 1) / 3)
stoogesort(L, i, j-t) // Sort the first 2/3 of the array
stoogesort(L, i+t, j) // Sort the last 2/3 of the array
stoogesort(L, i, j-t) // Sort the first 2/3 of the array again
return L
}
-- Not the best but equal to above
stoogesort :: (Ord a) => [a] -> [a]
stoogesort [] = []
stoogesort src = innerStoogesort src 0 ((length src) - 1)
innerStoogesort :: (Ord a) => [a] -> Int -> Int -> [a]
innerStoogesort src i j
| (j - i + 1) > 2 = src''''
| otherwise = src'
where
src' = swap src i j -- need every call
t = floor (fromIntegral (j - i + 1) / 3.0)
src'' = innerStoogesort src' i (j - t)
src''' = innerStoogesort src'' (i + t) j
src'''' = innerStoogesort src''' i (j - t)
swap :: (Ord a) => [a] -> Int -> Int -> [a]
swap src i j
| a > b = replaceAt (replaceAt src j a) i b
| otherwise = src
where
a = src !! i
b = src !! j
replaceAt :: [a] -> Int -> a -> [a]
replaceAt (x:xs) index value
| index == 0 = value : xs
| otherwise = x : replaceAt xs (index - 1) value