Woodward published a very brief account on the strychnine synthesis in 1954 (just 3 pages)[15] and a lengthy one (42 pages) in 1963.[16]
Many more methods exist and reported by the research groups of Magnus,[17] Overman,[18] Kuehne,[19][20] Rawal,[21] Bosch,[22][23] Vollhardt,[24][25] Mori,[26][27] Shibasaki,[28] Li,[29] Fukuyama [30] Vanderwal [31] and MacMillan.[32] Synthetic (+)-strychnine is also known.[33][34] Racemic synthesises were published by Padwa in 2007 [35] and in 2010 by Andrade [36] and by Reissig.[37]
In his 1963 publication Woodward quoted Sir Robert Robinson who said[38]for its molecular size it is the most complex substance known.
The molecule
The C21H22N2O2 strychnine molecule contains 7 rings including an indoline system. It has a tertiary amine group, an amide, an alkene and an ether group. The naturally occurring compound is also chiral with 6 asymmetric carbon atoms including one quaternary one.
In order to remove the C15 alcohol group, Enol15 was converted to tosylate16 (TsCl, pyridine) and then to mercaptoester 17 (sodium benzylmercaptide) which was then reduced to unsaturated ester 18 by Raney nickel and hydrogen. Further reduction with hydrogen / palladium on carbon afforded the saturated ester 19. Alkaline ester hydrolysis to carboxylic acid20 was accompanied by epimerization at C14.
This particular compound was already known from strychnine degradation studies. Until now all intermediates were racemic but chirality was introduced at this particular stage via chiral resolution using quinidine.
The C20 carbon atom was then introduced by acetic anhydride to form enol acetate 21 and the free aminoketone 22 was obtained by hydrolysis with hydrochloric acid. Ring VII in intermediate 23 was closed by selenium dioxide oxidation, a process accompanied by epimerization again at C14.
The formation of 21 can be envisioned as a sequence of acylation, deprotonation, rearrangement with loss of carbon dioxide and again acylation:
In this effort one of strychnine's many degradation products was synthesised first (the relay compound), a compound also available in several steps from another degradation product called the Wieland-Gumlich aldehyde. In the final leg strychnine itself was synthesised from the relay compound.
The overall yield (10%) is to date the largest of any of the published methods[40]
Bosch synthesis
In the Bosch synthesis of (1999, chiral) the olefin group in dione 1 was converted to an aldehyde by ozonolysis and chiral amine 2 was formed in a double reductive amination with (S)-1-phenethylamine. The phenylethyl substituent was removed using ClCO2CHClCH3 and the enone group was introduced in a Grieco elimination using TMSI, HMDS then PhSeCl then ozone and then diisopropylamine forming carbamate3. The amino group was deprotected by refluxing in methanol and then alkylated using (Z)-BrCH2CICH=CH2OTBDMS, to tertiary amine 4. A reductive Heck reaction took place next followed by methoxycarbonylation (LiHMDS, NCCO2Me) to tricycle 5. Reaction with zinc dust in 10% sulfuric acid removed the TBDMSprotective group, reduced the nitro group and brought about a reductive amino-carbonyl cyclization in a single step to tetracyclic 6 (epimeric mixture). In the final step to the Wieland-Gumlich aldehyde7 reaction with NaH in MeOH afforded the correct epimer was followed by DIBAH reduction of the methyl ester.
The method reported by Beemelmanns & Reissig (racemic, 2010) is another formal synthesis leading to the Rawal pentacycle (see amine 5 in the Rawal method). In this method indole 1 was converted to tetracycle 2 (together with by-product) in a single cascade reaction using samarium diiodide and HMPA.[41]Raney nickel/ H2 reduction gave amine 3 and a one-pot reaction using methyl chloroformate, DMAP and TEA then MsCl, DMAP and TEA and then DBU gave Rawal precursor 4 with key hydrogen atoms in the desired anti configuration.
In an aborted route intermediate 2 was first reduced to imine5 then converted to carbamate6, then dehydrated to diene 7 (Burgess reagent) and finally reduced to 8 (sodium cyanoborohydride). The hydrogen atoms in 8 are in an undesired cis-relationship which contradicts the results obtained in 2002 by Bodwell/Li for the same reaction.
^X-ray; Messerschmidt, M.; Scheins, S.; Luger, P. (2005). "Charge density of (−)-strychnine from 100 to 15 K, a comparison of four data sets". Acta Crystallogr B. 61 (1): 115–121. doi:10.1107/S0108768104032781. PMID15659864.
^Nicolaou, K. C.; Sorensen, E. J. (1996). Classics in Total Synthesis: Targets, Strategies, Methods. Wiley. ISBN978-3-527-29231-8.
^K. C. Nicolaou, Dionisios Vourloumis, Nicolas Winssinger, Phil S. Baran The Art and Science of Total Synthesis at the Dawn of the Twenty-First CenturyAngewandte Chemie International Edition 2000; Volume 39, Issue 1, Pages: 44-122
^Proudfoot, John R. (2013). "Reaction Schemes Visualized in Network Form: The Syntheses of Strychnine as an Example". Journal of Chemical Information and Modeling. 53 (5): 1035–1042. doi:10.1021/ci300556b. PMID23597302.
^Briggs, L. H.; Openshaw, H. T.; Robinson, Robert (1946). "Strychnine and brucine. Part XLII. Constitution of the neo-series of bases and their oxidation products". J. Chem. Soc.1946: 903. doi:10.1039/JR9460000903.
^Robertson, J. H.; Beevers, C. A. (1951). "The crystal structure of strychnine hydrogen bromide". Acta Crystallogr. 4 (3): 270–275. doi:10.1107/S0365110X5100088X.
^Woodward, R. B.; Cava, Michael P.; Ollis, W. D.; Hunger, A.; Daeniker, H. U.; Schenker, K. (1954). "The Total Synthesis of Strychnine". J. Am. Chem. Soc.76 (18): 4749–4751. doi:10.1021/ja01647a088.
^Woodward, R. B.; Cava, M. P.; Ollis, W. D.; Hunger, A.; Daeniker, H. U.; Schenker, K. (1963). "The total synthesis of strychnine". Tetrahedron. 19 (2): 247–288. doi:10.1016/s0040-4020(01)98529-1.
^Magnus, Philip; Giles, Melvyn; Bonnert, Roger; Kim, Chung S.; McQuire, Leslie; Merritt, Andrew; Vicker, Nigel (1992). "Synthesis of strychnine via the Wieland-Gumlich aldehyde". J. Am. Chem. Soc.114 (11): 4403–4405. doi:10.1021/ja00037a058.
^Knight, Steven D.; Overman, Larry E.; Pairaudeau, Garry (1993). "Synthesis applications of cationic aza-Cope rearrangements. 26. Enantioselective total synthesis of (−)-strychnine". J. Am. Chem. Soc.115 (20): 9293–9294. doi:10.1021/ja00073a057.
^Kuehne, Martin E.; Xu, Feng (1993). "Total synthesis of strychnan and aspidospermatan alkaloids. 3. The total synthesis of (+-)-strychnine". J. Org. Chem.58 (26): 7490–7497. doi:10.1021/jo00078a030.
^Kuehne, Martin E.; Xu, Feng (1998). "Syntheses of Strychnan- and Aspidospermatan-Type Alkaloids. 10. An Enantioselective Synthesis of (−)-Strychnine through the Wieland−Gumlich Aldehyde". J. Org. Chem.63 (25): 9427–9433. doi:10.1021/jo9813989.
^Rawal, Viresh H.; Iwasa, Seiji (1994). "A Short, Stereocontrolled Synthesis of Strychnine". J. Org. Chem.59 (10): 2685–2686. doi:10.1021/jo00089a008.
^Total Synthesis of (−)-Strychnine via the Wieland-Gumlich AldehydeAngewandte Chemie International Edition Volume 38, Issue 3, 1999, Pages: 395-397 Daniel Solé, Josep Bonjoch, Silvina García-Rubio, Emma Peidró, Joan Bosch
^Eichberg, Michael J.; Dorta, Rosa L.; Lamottke, Kai; Vollhardt, K. Peter C. (2000). "The Formal Total Synthesis of (±)-Strychnine via a Cobalt-Mediated [2 + 2 + 2]Cycloaddition". Org. Lett.2 (16): 2479–2481. doi:10.1021/ol006131m. PMID10956526.
^Eichberg, Michael J.; Dorta, Rosa L.; Grotjahn, Douglas B.; Lamottke, Kai; Schmidt, Martin; Vollhardt, K. Peter C. (2001). "Approaches to the Synthesis of (±)-Strychnine via the Cobalt-Mediated [2 + 2 + 2] Cycloaddition: Rapid Assembly of a Classic Framework". J. Am. Chem. Soc.123 (38): 9324–9337. doi:10.1021/ja016333t. PMID11562215.
^Mori, Miwako; Nakanishi, Masato; Kajishima, Daisuke; Sato, Yoshihiro (2003). "A Novel and General Synthetic Pathway to Strychnos Indole Alkaloids: Total Syntheses of (−)-Tubifoline, (−)-Dehydrotubifoline, and (−)-Strychnine Using Palladium-Catalyzed Asymmetric Allylic Substitution". J. Am. Chem. Soc.125 (32): 9801–9807. doi:10.1021/ja029382u. PMID12904045.
^Ohshima, Takashi; Xu, Youjun; Takita, Ryo; Shimizu, Satoshi; Zhong, Dafang; Shibasaki, Masakatsu (2002). "Enantioselective Total Synthesis of (−)-Strychnine Using the Catalytic Asymmetric Michael Reaction and Tandem Cyclization". J. Am. Chem. Soc.124 (49): 14546–14547. doi:10.1021/ja028457r. PMID12465959.
^Martin, David B. C.; Vanderwal, Christopher D. (2011). "A synthesis of strychnine by a longest linear sequence of six steps". Chemical Science. 2 (4): 649. doi:10.1039/C1SC00009H.
^Knight, Steven D.; Overman, Larry E.; Pairaudeau, Garry (1995). "Asymmetric Total Syntheses of (−)- and (+)-Strychnine and the Wieland-Gumlich Aldehyde". J. Am. Chem. Soc.117 (21): 5776–5788. doi:10.1021/ja00126a017.
^Not counted:an unpublished method by Gilbert Stork, Lecture at the Ischia School of Organic Chemistry, Ischia Porb, Italy, September 211992.
^Sirasani, Gopal; Paul, Tapas; William Dougherty, Jr.; Kassel, Scott; Andrade, Rodrigo B. (2010). "Concise Total Syntheses of (±)-Strychnine and (±)-Akuammicine". The Journal of Organic Chemistry. 75 (10): 3529–3532. doi:10.1021/jo100516g. PMID20408591.
^Beemelmanns, C.; Reissig, H.-U. (2010). "A Short Formal Total Synthesis of Strychnine with a Samarium Diiodide Induced Cascade Reaction as the Key Step". Angewandte Chemie International Edition. 49 (43): 8021–8025. doi:10.1002/anie.201003320. PMID20848626.
^R. Robinson "Molecular structure of Strychnine, Brucine and Vomicine Prog. Org. Chem., 1952; 1 ,2
^Szostak, M.; Procter, D. J. (2011). "Concise Syntheses of Strychnine and Englerin A: the Power of Reductive Cyclizations Triggered by Samarium Iodide". Angewandte Chemie International Edition. 50 (34): 7737–7739. doi:10.1002/anie.201103128. PMID21780264.
^Martin, David B. C.; Vanderwal, Christopher D. (2011). "A synthesis of strychnine by a longest linear sequence of six steps". Chemical Science. 2 (4): 649. doi:10.1039/C1SC00009H.