Share to: share facebook share twitter share wa share telegram print page

Taft Hopf algebra

In algebra, a Taft Hopf algebra is a Hopf algebra introduced by Earl Taft (1971) that is neither commutative nor cocommutative and has an antipode of large even order.

Construction

Suppose that k is a field with a primitive n'th root of unity ζ for some positive integer n. The Taft algebra is the n2-dimensional associative algebra generated over k by c and x with the relations cn=1, xn=0, xccx. The coproduct takes c to cc and x to cx + x⊗1. The counit takes c to 1 and x to 0. The antipode takes c to c−1 and x to –c−1x: the order of the antipode is 2n (if n > 1).

References

Kembali kehalaman sebelumnya