Share to: share facebook share twitter share wa share telegram print page

Tate module

In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group A. Often, this construction is made in the following situation: G is a commutative group scheme over a field K, Ks is the separable closure of K, and A = G(Ks) (the Ks-valued points of G). In this case, the Tate module of A is equipped with an action of the absolute Galois group of K, and it is referred to as the Tate module of G.

Definition

Given an abelian group A and a prime number p, the p-adic Tate module of A is

where A[pn] is the pn torsion of A (i.e. the kernel of the multiplication-by-pn map), and the inverse limit is over positive integers n with transition morphisms given by the multiplication-by-p map A[pn+1] → A[pn]. Thus, the Tate module encodes all the p-power torsion of A. It is equipped with the structure of a Zp-module via

Examples

The Tate module

When the abelian group A is the group of roots of unity in a separable closure Ks of K, the p-adic Tate module of A is sometimes referred to as the Tate module (where the choice of p and K are tacitly understood). It is a free rank one module over Zp with a linear action of the absolute Galois group GK of K. Thus, it is a Galois representation also referred to as the p-adic cyclotomic character of K. It can also be considered as the Tate module of the multiplicative group scheme Gm,K over K.

The Tate module of an abelian variety

Given an abelian variety G over a field K, the Ks-valued points of G are an abelian group. The p-adic Tate module Tp(G) of G is a Galois representation (of the absolute Galois group, GK, of K).

Classical results on abelian varieties show that if K has characteristic zero, or characteristic ℓ where the prime number p ≠ ℓ, then Tp(G) is a free module over Zp of rank 2d, where d is the dimension of G.[1] In the other case, it is still free, but the rank may take any value from 0 to d (see for example Hasse–Witt matrix).

In the case where p is not equal to the characteristic of K, the p-adic Tate module of G is the dual of the étale cohomology .

A special case of the Tate conjecture can be phrased in terms of Tate modules.[2] Suppose K is finitely generated over its prime field (e.g. a finite field, an algebraic number field, a global function field), of characteristic different from p, and A and B are two abelian varieties over K. The Tate conjecture then predicts that

where HomK(A, B) is the group of morphisms of abelian varieties from A to B, and the right-hand side is the group of GK-linear maps from Tp(A) to Tp(B). The case where K is a finite field was proved by Tate himself in the 1960s.[3] Gerd Faltings proved the case where K is a number field in his celebrated "Mordell paper".[4]

In the case of a Jacobian over a curve C over a finite field k of characteristic prime to p, the Tate module can be identified with the Galois group of the composite extension

where is an extension of k containing all p-power roots of unity and A(p) is the maximal unramified abelian p-extension of .[5]

Tate module of a number field

The description of the Tate module for the function field of a curve over a finite field suggests a definition for a Tate module of an algebraic number field, the other class of global field, introduced by Kenkichi Iwasawa. For a number field K we let Km denote the extension by pm-power roots of unity, the union of the Km and A(p) the maximal unramified abelian p-extension of . Let

Then Tp(K) is a pro-p-group and so a Zp-module. Using class field theory one can describe Tp(K) as isomorphic to the inverse limit of the class groups Cm of the Km under norm.[5]

Iwasawa exhibited Tp(K) as a module over the completion Zp[[T]] and this implies a formula for the exponent of p in the order of the class groups Cm of the form

The Ferrero–Washington theorem states that μ is zero.[6]

See also

Notes

References

  • Faltings, Gerd (1983), "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern", Inventiones Mathematicae, 73 (3): 349–366, Bibcode:1983InMat..73..349F, doi:10.1007/BF01388432, S2CID 121049418
  • "Tate module", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Manin, Yu. I.; Panchishkin, A. A. (2007), Introduction to Modern Number Theory, Encyclopaedia of Mathematical Sciences, vol. 49 (Second ed.), ISBN 978-3-540-20364-3, ISSN 0938-0396, Zbl 1079.11002
  • Murty, V. Kumar (2000), Introduction to abelian varieties, CRM Monograph Series, vol. 3, American Mathematical Society, ISBN 978-0-8218-1179-5
  • Section 13 of Rohrlich, David (1994), "Elliptic curves and the Weil–Deligne group", in Kisilevsky, Hershey; Murty, M. Ram (eds.), Elliptic curves and related topics, CRM Proceedings and Lecture Notes, vol. 4, American Mathematical Society, ISBN 978-0-8218-6994-9
  • Tate, John (1966), "Endomorphisms of abelian varieties over finite fields", Inventiones Mathematicae, 2 (2): 134–144, Bibcode:1966InMat...2..134T, doi:10.1007/bf01404549, MR 0206004, S2CID 245902

Read other articles:

Para otros usos de este término, véase Juana II de Nápoles. Juana I de Nápoles Miniatura de una ed. del s. XV o XVI de la obra de Boccaccio De mulieribus claris: la reina Juana. BnF. Reina de Nápoles 20 de enero de 1343-22 de mayo de 1382Predecesor Roberto ISucesor Carlos III Condesa de Provenza y Forcalquier 20 de enero de 1343-22 de mayo de 1382Predecesor Roberto ISucesor Luis I Princesa de Acaya 1373-1381Predecesor Felipe II de TarentoSucesor Jaime de Baux Información personalNombre ...

 

У этого термина существуют и другие значения, см. Млечный Путь (значения). Млечный ПутьГалактика Модель внешнего вида Млечного Пути Характеристики Тип Спиральная галактика с баром Входит в Местная группа Абсолютная звёздная величина (V) −20,9m Масса (1—2)⋅1012 M☉ Радиус 50 ты

 

وادي كاغيان    خريطة الموقع سميت باسم نهر كاغيان  تقسيم إداري البلد الفلبين  [1] العاصمة تيغيغيوراو التقسيم الأعلى الفلبين  خصائص جغرافية إحداثيات 17°37′00″N 121°43′00″E / 17.616666666667°N 121.71666666667°E / 17.616666666667; 121.71666666667  [2] المساحة 28,228.83 كيلومتر مربع �...

Эта статья — о патогене — вирусе иммунодефицита человека. О заболевании см. ВИЧ-инфекция; о терминальной стадии болезни см. Синдром приобретённого иммунного дефицита. Запросы «ВИЧ» и «Вич» перенаправляются сюда, см. также: Вич (значения) Вирус иммун�...

 

La legge costituzionale è un atto normativo, presente negli ordinamenti a costituzione rigida, adottato dal parlamento con una procedura aggravata, ossia più complessa rispetto a quella prevista per le leggi ordinarie, che ha lo stesso rango della costituzione nella gerarchia delle fonti del diritto e la può, entro certi limiti, integrare o modificare (in quest'ultimo caso si può parlare, più specificamente, di legge di revisione costituzionale o riforma costituzionale). In alcuni ordina...

 

Award2008 Summer Olympics medalsLocationBeijing,  ChinaHighlightsMost gold medals China (48)Most total medals United States (112) ← 2004 · Olympics medal tables · 2012 → Map of the world showing the achievements of each country during the 2008 Summer Olympics in Beijing, People's Republic of China.Gold for countries achieving at least one gold medal.Silver for countries achieving at least one silver medal.Brown for countries achieving...

Переписна місцевість Туніка-Резортсангл. Tunica Resorts Координати 34°49′01″ пн. ш. 90°18′58″ зх. д. / 34.81694444447177261° пн. ш. 90.31611111113878110° зх. д. / 34.81694444447177261; -90.31611111113878110Координати: 34°49′01″ пн. ш. 90°18′58″ зх. д. / 34.81694444447177261° пн. ш. 90.3...

 

Belgian one-day cycling race, one of the five monuments This article is about the senior men's cycle race. For the women's event, see Tour of Flanders for Women. For the under-23 men's event, see Ronde Van Vlaanderen Beloften. Tour of Flanders (Elite Men)Race detailsDateEarly AprilRegionFlanders, BelgiumLocal name(s)Ronde van Vlaanderen (Dutch)Nickname(s)De Ronde (in Dutch)Vlaanderens Mooiste (in Dutch)Flanders' Most Beautiful (in English)DisciplineRoadCompetitionUCI World TourTypeO...

 

Slovak actress This article may have been created or edited in return for undisclosed payments, a violation of Wikipedia's terms of use. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. (May 2020) Katrina GreyBornKatarina Greguskova (1991-01-11) January 11, 1991 (age 32)Ilava, CzechoslovakiaNationalitySlovakOccupation(s)ActressScreenwriterDirectorYears active2013–presentKnown forHard Target 2Ghost HouseBrice 3Websitegreyf...

Martin SheenSheen pada 2008LahirRamón Antonio Gerardo Estévez3 Agustus 1940 (umur 83)Dayton, Ohio, ASWarga negara Amerika Serikat Irlandia[1] PekerjaanPemeranaktivisTahun aktif1960–sekarangPartai politikDemokratSuami/istriJanet Templeton ​(m. 1961)​AnakEmilio EstevezRamon EstevezCharlie SheenRenée EstevezKeluargaEstevez Suara Martin Sheen dari program BBC Desert Island Discs, 3 April 2011[2] Tanda tangan Ramón Antonio Gerardo Estév...

 

Daugavpils merupakan nama kota terbesar kedua di Latvia. Kota ini terletak 230 km dari Riga. Pada Januari 2006, jumlah penduduk di kota ini mencapai 108.260 jiwa, pada Januari 2016, jumlah penduduk di kota ini mencapai 95.467 jiwa. Kota ini dulunya bernama Dinaburg (1275-1893). Lihat pula Perang Daugavpils Dinaburg FC FC Ditton lbsPembagian administratif tingkat satu LatviaKota republik Daugavpils Jēkabpils Jelgava Jūrmala Liepāja Rēzekne Riga Valmiera Ventspils Munisipalitas Aglona Aizkr...

 

State park in Florida, United States Henderson Beach State ParkHenderson Beach State ParkShow map of FloridaShow map of the United StatesLocationOkaloosa County, Florida, USANearest cityDestin, FloridaCoordinates30°23′38″N 86°34′59″W / 30.39389°N 86.58306°W / 30.39389; -86.58306EstablishedMarch 29, 1991Governing bodyFlorida Department of Environmental Protection Wikimedia Commons has media related to Henderson Beach State Park. Henderson Beach Sta...

Newfound LakeNewfound Lake from Wellington State Park, Bristol, NHNewfound LakeShow map of New HampshireNewfound LakeShow map of the United StatesLocationGrafton County, New HampshireCoordinates43°39′46″N 71°46′31″W / 43.66278°N 71.77528°W / 43.66278; -71.77528Primary inflowsFowler RiverCockermouth RiverPrimary outflowsNewfound RiverBasin countriesUnited StatesMax. length6.0 miles (9.7 km)Max. width2.4 miles (3.9 km)Surface area4,451 acres (1...

 

Campeonato de Primera División 1987-88Primera División de ArgentinaDatos generalesSede ArgentinaFecha de inicio 30 de agosto de 1987Fecha de cierre 5 de junio de 1988Edición LVIII temporada y LXXVIII torneo de PrimeraTV oficial ATCPalmarésCampeón Newell's Old BoysSubcampeón San LorenzoDatos estadísticosParticipantes 20Goleador José Luis Rodríguez (18 goles)Clasificación a otros torneos Copa Libertadores 1988 Newell's Old BoysSan Lorenzo Intercambio de plazas Descenso(s): BanfieldUni...

 

Helma Seitz (* 23. Februar 1913 in Offenbach am Main; † 11. Juli 1995 in Köln) war eine deutsche Schauspielerin. Sie wurde vor allem durch ihre Rolle als Fräulein Käthe Rehbein („Rehbeinchen“), die Sekretärin des Kommissars Keller, bekannt, die sie in zahlreichen Folgen der Krimiserie „Der Kommissar“ verkörperte. Inhaltsverzeichnis 1 Leben 2 Filmografie (Auswahl) 3 Literatur 4 Weblinks 5 Einzelnachweise Leben Die Fabrikantentochter absolvierte eine Schauspielausbildung und bega...

History museum in Van Nuys, CAValley Relics MuseumNeon sign from the defunct Palomino Club displayed at the Valley Relics MuseumEstablished2013Location7900 Balboa Blvd.Van Nuys, CA 91406Coordinates34°12′44″N 118°30′3″W / 34.21222°N 118.50083°W / 34.21222; -118.50083TypeHistory museumDirectorTommy GelinasWebsitevalleyrelicsmuseum.org Valley Relics Museum is a museum located in the San Fernando Valley of Los Angeles. The LA Weekly named the Valley Relics Muse...

 

American television host and sportscaster Charissa ThompsonThompson in 2018BornCharissa Jean Thompson (1982-05-04) May 4, 1982 (age 41)Seattle, Washington, U.S.EducationUniversity of California, Santa Barbara (B.A.)Occupation(s)Television host and sportscasterYears active2006–presentTelevisionNHL on Versus, Big Ten Network, Extra, Fox NFL Kickoff, NFL on Fox, Fox Sports 1 (sideline reporter)Numbers Never Lie on ESPN (host)SportsNation on ESPN (co-host) NFL Gameday Prime Host (NFL ...

 

Downtown Islamabad Islamabad is the capital of Pakistan and a net contributor to the Pakistani economy. Whilst having only 0.8% of the country's population, it contributes 1% to the country's GDP.[1] The Islamabad Stock Exchange, founded in 1989, is Pakistan's third largest stock exchange after Karachi Stock Exchange and Lahore Stock Exchange.[2] The exchange has 118 members with 104 corporate bodies and 18 individual members. The average daily turnover of the stock exchange i...

British nobleman and politician Richard, 2nd Baron Edgcumbe, by Joshua Reynolds. Arms of Edgcumbe, Earls of Mount Edgcumbe: Gules, on a bend ermines cotised or three boar's heads couped argent Richard Edgcumbe, 2nd Baron Edgcumbe PC (2 August 1716 – 10 May 1761) was a British nobleman and politician. The eldest surviving son of Richard Edgcumbe, 1st Baron Edgcumbe and his wife Matilda Furnese, he was educated at Eton from 1725 to 1732. Through his father's interest in Devon and Cornwall, he...

 

Prime Minister of theYemen Arab Republicرؤساء وزراء الجمهورية العربية اليمنية (Arabic)Coat of arms of North YemenResidenceSana'a, Yemen Arab RepublicAppointerPresident of Yemen Arab RepublicPrecursorPrime Minister of Mutawakkilite Kingdom of YemenFormation28 September 1962First holderAbdullah al-SallalFinal holderAbdul Aziz Abdul GhaniAbolished22 May 1990SuccessionPrime Minister of Yemen The prime minister of the Yemen Arab Republic was the head of govern...

 
Kembali kehalaman sebelumnya