Share to: share facebook share twitter share wa share telegram print page

Undecidable problem

In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether an arbitrary program eventually halts when run.[1]

Background

A decision problem is a question which, for every input in some infinite set of inputs, answers "yes" or "no".[2] Those inputs can be numbers (for example, the decision problem "is the input a prime number?") or values of some other kind, such as strings of a formal language.

The formal representation of a decision problem is a subset of the natural numbers. For decision problems on natural numbers, the set consists of those numbers that the decision problem answers "yes" to. For example, the decision problem "is the input even?" is formalized as the set of even numbers. A decision problem whose input consists of strings or more complex values is formalized as the set of numbers that, via a specific Gödel numbering, correspond to inputs that satisfy the decision problem's criteria.

A decision problem A is called decidable or effectively solvable if the formalized set of A is a recursive set. Otherwise, A is called undecidable. A problem is called partially decidable, semi-decidable, solvable, or provable if A is a recursively enumerable set.[nb 1]

Example: the halting problem in computability theory

In computability theory, the halting problem is a decision problem which can be stated as follows:

Given the description of an arbitrary program and a finite input, decide whether the program finishes running or will run forever.

Alan Turing proved in 1936 that a general algorithm running on a Turing machine that solves the halting problem for all possible program-input pairs necessarily cannot exist. Hence, the halting problem is undecidable for Turing machines.

Relationship with Gödel's incompleteness theorem

The concepts raised by Gödel's incompleteness theorems are very similar to those raised by the halting problem, and the proofs are quite similar. In fact, a weaker form of the First Incompleteness Theorem is an easy consequence of the undecidability of the halting problem. This weaker form differs from the standard statement of the incompleteness theorem by asserting that an axiomatization of the natural numbers that is both complete and sound is impossible. The "sound" part is the weakening: it means that we require the axiomatic system in question to prove only true statements about natural numbers. Since soundness implies consistency, this weaker form can be seen as a corollary of the strong form. It is important to observe that the statement of the standard form of Gödel's First Incompleteness Theorem is completely unconcerned with the truth value of a statement, but only concerns the issue of whether it is possible to find it through a mathematical proof.

The weaker form of the theorem can be proved from the undecidability of the halting problem as follows.[3] Assume that we have a sound (and hence consistent) and complete axiomatization of all true first-order logic statements about natural numbers. Then we can build an algorithm that enumerates all these statements. This means that there is an algorithm N(n) that, given a natural number n, computes a true first-order logic statement about natural numbers, and that for all true statements, there is at least one n such that N(n) yields that statement. Now suppose we want to decide if the algorithm with representation a halts on input i. We know that this statement can be expressed with a first-order logic statement, say H(a, i). Since the axiomatization is complete it follows that either there is an n such that N(n) = H(a, i) or there is an n such that N(n) = ¬ H(a, i). So if we iterate over all n until we either find H(a, i) or its negation, we will always halt, and furthermore, the answer it gives us will be true (by soundness). This means that this gives us an algorithm to decide the halting problem. Since we know that there cannot be such an algorithm, it follows that the assumption that there is a consistent and complete axiomatization of all true first-order logic statements about natural numbers must be false.

Examples of undecidable problems

Undecidable problems can be related to different topics, such as logic, abstract machines or topology. Since there are uncountably many undecidable problems,[nb 2] any list, even one of infinite length, is necessarily incomplete.

Examples of undecidable statements

There are two distinct senses of the word "undecidable" in contemporary use. The first of these is the sense used in relation to Gödel's theorems, that of a statement being neither provable nor refutable in a specified deductive system. The second sense is used in relation to computability theory and applies not to statements but to decision problems, which are countably infinite sets of questions each requiring a yes or no answer. Such a problem is said to be undecidable if there is no computable function that correctly answers every question in the problem set. The connection between these two is that if a decision problem is undecidable (in the recursion theoretical sense) then there is no consistent, effective formal system which proves for every question A in the problem either "the answer to A is yes" or "the answer to A is no".

Because of the two meanings of the word undecidable, the term independent is sometimes used instead of undecidable for the "neither provable nor refutable" sense. The usage of "independent" is also ambiguous, however. It can mean just "not provable", leaving open whether an independent statement might be refuted.

Undecidability of a statement in a particular deductive system does not, in and of itself, address the question of whether the truth value of the statement is well-defined, or whether it can be determined by other means. Undecidability only implies that the particular deductive system being considered does not prove the truth or falsity of the statement. Whether there exist so-called "absolutely undecidable" statements, whose truth value can never be known or is ill-specified, is a controversial point among various philosophical schools.

One of the first problems suspected to be undecidable, in the second sense of the term, was the word problem for groups, first posed by Max Dehn in 1911, which asks if there is a finitely presented group for which no algorithm exists to determine whether two words are equivalent. This was shown to be the case in 1955.[4]

The combined work of Gödel and Paul Cohen has given two concrete examples of undecidable statements (in the first sense of the term): The continuum hypothesis can neither be proved nor refuted in ZFC (the standard axiomatization of set theory), and the axiom of choice can neither be proved nor refuted in ZF (which is all the ZFC axioms except the axiom of choice). These results do not require the incompleteness theorem. Gödel proved in 1940 that neither of these statements could be disproved in ZF or ZFC set theory. In the 1960s, Cohen proved that neither is provable from ZF, and the continuum hypothesis cannot be proven from ZFC.

In 1970, Russian mathematician Yuri Matiyasevich showed that Hilbert's Tenth Problem, posed in 1900 as a challenge to the next century of mathematicians, cannot be solved. Hilbert's challenge sought an algorithm which finds all solutions of a Diophantine equation. A Diophantine equation is a more general case of Fermat's Last Theorem; we seek the integer roots of a polynomial in any number of variables with integer coefficients. Since we have only one equation but n variables, infinitely many solutions exist (and are easy to find) in the complex plane; however, the problem becomes impossible if solutions are constrained to integer values only. Matiyasevich showed this problem to be unsolvable by mapping a Diophantine equation to a recursively enumerable set and invoking Gödel's Incompleteness Theorem.[5]

In 1936, Alan Turing proved that the halting problem—the question of whether or not a Turing machine halts on a given program—is undecidable, in the second sense of the term. This result was later generalized by Rice's theorem.

In 1973, Saharon Shelah showed the Whitehead problem in group theory is undecidable, in the first sense of the term, in standard set theory.[6]

In 1977, Paris and Harrington proved that the Paris-Harrington principle, a version of the Ramsey theorem, is undecidable in the axiomatization of arithmetic given by the Peano axioms but can be proven to be true in the larger system of second-order arithmetic.

Kruskal's tree theorem, which has applications in computer science, is also undecidable from the Peano axioms but provable in set theory. In fact Kruskal's tree theorem (or its finite form) is undecidable in a much stronger system codifying the principles acceptable on basis of a philosophy of mathematics called predicativism.

Goodstein's theorem is a statement about the Ramsey theory of the natural numbers that Kirby and Paris showed is undecidable in Peano arithmetic.

Gregory Chaitin produced undecidable statements in algorithmic information theory and proved another incompleteness theorem in that setting. Chaitin's theorem states that for any theory that can represent enough arithmetic, there is an upper bound c such that no specific number can be proven in that theory to have Kolmogorov complexity greater than c. While Gödel's theorem is related to the liar paradox, Chaitin's result is related to Berry's paradox.

In 2007, researchers Kurtz and Simon, building on earlier work by J.H. Conway in the 1970s, proved that a natural generalization of the Collatz problem is undecidable.[7]

In 2019, Ben-David and colleagues constructed an example of a learning model (named EMX), and showed a family of functions whose learnability in EMX is undecidable in standard set theory.[8][9]

See also

Notes

  1. ^ This means that there exists an algorithm that halts eventually when the answer is yes but may run forever if the answer is no.
  2. ^ There are uncountably many subsets of , only countably many of which can be decided by algorithms. However, also only countably many decision problems can be stated in any language.

References

  1. ^ "Formal Computational Models and Computability". www.cs.rochester.edu. Retrieved 2022-06-12.
  2. ^ "decision problem". Oxford Reference. Retrieved 2022-06-12.
  3. ^ Aaronson, Scott (21 July 2011). "Rosser's Theorem via Turing machines". Shtetl-Optimized. Retrieved 2 November 2022.
  4. ^ Novikov, Pyotr S. (1955), "On the algorithmic unsolvability of the word problem in group theory", Proceedings of the Steklov Institute of Mathematics (in Russian), 44: 1–143, Zbl 0068.01301
  5. ^ Matiyasevich, Yuri (1970). Диофантовость перечислимых множеств [Enumerable sets are Diophantine]. Doklady Akademii Nauk SSSR (in Russian). 191: 279–282.
  6. ^ Shelah, Saharon (1974). "Infinite Abelian groups, Whitehead problem and some constructions". Israel Journal of Mathematics. 18 (3): 243–256. doi:10.1007/BF02757281. MR 0357114. S2CID 123351674.
  7. ^ Kurtz, Stuart A.; Simon, Janos, "The Undecidability of the Generalized Collatz Problem", in Proceedings of the 4th International Conference on Theory and Applications of Models of Computation, TAMC 2007, held in Shanghai, China in May 2007. ISBN 3-540-72503-2. doi:10.1007/978-3-540-72504-6_49
  8. ^ Ben-David, Shai; Hrubeš, Pavel; Moran, Shay; Shpilka, Amir; Yehudayoff, Amir (2019-01-07). "Learnability can be undecidable". Nature Machine Intelligence. 1 (1): 44–48. doi:10.1038/s42256-018-0002-3. ISSN 2522-5839. S2CID 257109887.
  9. ^ Reyzin, Lev (2019). "Unprovability comes to machine learning". Nature. 565 (7738): 166–167. Bibcode:2019Natur.565..166R. doi:10.1038/d41586-019-00012-4. ISSN 0028-0836. PMID 30617250.

Read other articles:

روبن هيشت معلومات شخصية الميلاد 15 أغسطس 1909  أنتويرب  تاريخ الوفاة 14 أبريل 1993 (83 سنة)   مواطنة سويسرا  الحياة العملية المهنة رائد أعمال،  وجامع تحف  اللغات العبرية  الجوائز  جائزة إسرائيل  (1988)  تعديل مصدري - تعديل   روبن هيشت هو رائد أعمال سويسري، ولد

 

 

Clarence WilsonA Shriek in the Night (1933)LahirClarence Hummel Wilson(1876-11-17)17 November 1876Cincinnati, Ohio, Amerika SerikatMeninggal5 Oktober 1941(1941-10-05) (umur 64)Hollywood, California, Amerika SerikatPekerjaanPemeranTahun aktif1920-1941 Clarence Hummel Wilson (17 November 1876 – 5 Oktober 1941) adalah seorang pemeran karakter asal Amerika Serikat. Wilson tampil dalam sekitar 200 film antara 1920 dan 1941, umumnya dalam peran pendukung. Referensi Pranala...

 

 

Leonard Nimoy Leonard Nimoy in 1966 Algemene informatie Volledige naam Leonard Simon Nimoy Geboren 26 maart 1931 Geboorteplaats Boston (Massachusetts) Overleden 27 februari 2015 Overlijdensplaats Bel Air (Californië) Land Vlag van Verenigde Staten Verenigde Staten Werk Jaren actief 1951–2013 Beroep Acteur Stemacteur Filmregisseur Filmproducent Televisieproducent Scenarioschrijver Dichter Fotograaf (en) IMDb-profiel (en) IBDB-profiel MovieMeter-profiel (en) TMDb-profiel Porta...

Сексмісія / Нові амазонкипол. Seksmisja Жанр комедіяРежисер Юліуш МахульськийПродюсер Махульський ЮліушСценарист Юліуш МахульськийЙоланта ГартвіґУ головних ролях Єжи ШтурОльгерд ЛукашевичБожена СтрийкувнаБогуслава ПавелецьОператор Єжи ЛукашевичКомпозитор Хенрік Кузьн

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2022)   سيف غوجيانصورة لسيف غوجيان في متحف مقاطعة هوبيمعلومات عامةمادة الإنشاء برونزتاريخ الإنشاء فترة الربيع والخريفتاريخ الاكتشاف الصين، مقاطعة جيانغلينغ س

 

 

No debe confundirse con la serie de televisión valenciana L'Alqueria Blanca. Para otros usos de este término, véase Alquería (desambiguación). Alquería Blanca s'Alqueria Blanca localidad Vista de Alquería Blanca desde la carretera de Porto Petro Alquería BlancaUbicación de Alquería Blanca en España. Alquería BlancaUbicación de Alquería Blanca en las Islas Baleares.País  España• Com. autónoma  Islas Baleares• Provincia  Baleares•...

fotografiert von Allan Warren Elena Souliotis, auch Elena Suliotis (griechisch Έλενα Σουλιώτη; * 28. Mai 1943 in Athen; † 4. Dezember 2004 in Florenz) war eine griechische Opernsängerin (Sopran). Leben Mit zwei Jahren erlitt sie eine Meningitis und war danach auf einem Ohr schwerhörig. Als sie fünf Jahre alt war, emigrierten ihre Eltern – die Mutter war Griechin, der Vater Russe – nach Buenos Aires. Ihre Gesangsausbildung erhielt sie dort bei Alfredo Bontà, Jascha Galpe...

 

 

1983 live album by Chet Baker TrioSomeday My Prince Will ComeLive album by Chet Baker TrioReleased1983RecordedOctober 4, 1979VenueJazzhus Montmartre, Copenhagen, DenmarkGenreJazzLength54:32 CD release with bonus tracksLabelSteepleChaseSCS 1180ProducerNils WintherChet Baker chronology This Is Always(1979) Someday My Prince Will Come(1983) Chet Baker / Wolfgang Lackerschmid(1979) Someday My Prince Will Come is a live album by trumpeter/vocalist Chet Baker which was recorded in 1979 at t...

 

 

Анатолій КривоножкоКривоножко Анатолій Миколайович  Генерал-лейтенантЗагальна інформаціяНаціональність українецьВійськова службаПриналежність  УкраїнаВид ЗС  Повітряні силиФормування ПвК «Центр»Війни / битви Російсько-українська війнаКомандування 2006—2008 ...

Не плутати з Ґіві. Російський колабораціонізм Друга світова війна Основні поняття Колабораціонізм у Другій світовій війні • Російський визвольний рух Ідеологія Непримиримість • Антикомунізм • Пораженство Історія Громадянська війна в Росії • Біла еміграція • Колекти

 

 

أعضاء مؤتمر سيواس في سبتمبر 1919. أعضاء مؤتمر سيواس في عام 1919 أول وصول للجنة التمثيلية في أنقرة في 27 ديسمبر 1919. هيئة التمثيل (بالتركية: Heyet-i Temsiliye)‏ كانت الفرع التنفيذي للقوميين الأتراك قبل افتتاح الجمعية التركية الكبرى في الفترة 1919-1920. الخلفية بعد هزيمة الدولة العثمانية في ال�...

 

 

Indian actress (1947–2019) GeethanjaliBornMani[1]1947 (1947)Kakinada, Madras Presidency, British IndiaDied31 October 2019(2019-10-31) (aged 71–72)Hyderabad, Telangana, IndiaOccupationActressYears active1947–2019SpouseRamakrishna[1]Children1ParentsSri Rama Murthy[1] (father)Shyamalamba [1] (mother) Geethanjali (1947 – 31 October 2019) was an Indian actress who worked in Telugu, Tamil, Malayalam, and Hindi films.[2] In a career span...

2019 compilation album by Dermot KennedyDermot KennedyCompilation album by Dermot KennedyReleased4 January 2019LabelRigginsInterscopeIslandProducerKozCarey WillettsDermot Kennedy chronology Mike Dean Presents: Dermot Kennedy(2018) Dermot Kennedy(2019) Without Fear(2019) Singles from Dermot Kennedy An Evening I Will Not ForgetReleased: 18 November 2015 ShelterReleased: 12 February 2016 After RainReleased: 1 April 1, 2016 Moments PassedReleased: 19 September 2017 Young & FreeRelease...

 

 

Empress of Japan from 1989 to 2019 You can help expand this article with text translated from the corresponding article in Japanese. (June 2021) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a ...

 

 

Filipino fish sausage Fish longganisaCourseSausagePlace of originPhilippinesMain ingredientsfish (typically tuna, tilapia, or milkfish) Fish longganisa, or fish chorizo, is a Filipino sausage made with fish instead of pork or beef. It is typically made from tuna, tilapia, or milkfish. It is prepared identically to other Filipino longganisa and is marketed as a healthier alternative. It may use regular pork casings, vegetable-based casings, or be prepared skinless (without the casing).[1&#...

This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (December 2018) 2018 Swedish filmDraugFilm posterDirected byKlas PerssonKarin EngmanWritten byKlas PerssonProduced byKarin EngmanFaravid Af UgglasStarringThomas HedengranElna KarlssonRalf BeckNina FilimoshkinaUrban BergstenMatti BoustedtCinematographyKlas PerssonMusic byKlas PerssonProductioncompanyÖdmården Filmproduction HBRelease dates October 10,&#...

 

 

Cave temple associated with the Mahāsāṃghika sect. Ajaṇṭā Caves, Mahārāṣtra, India Part of a series onEarly Buddhism Scriptures Early Buddhist Texts (EBT) Tripiṭaka Nikayas Āgamas Gandhāran EBTs Prātimokṣa Abhidharma Jatakas Avadanas Mahāvastu Śālistamba Sūtra Tibetan EBTs in the Kangyur Early sangha Gautama Buddha Sāriputta Mahāmoggallāna Mahāpajāpatī Gotamī Mahakasyapa Ānanda Upāli Mahākātyāyana Devadatta Anāthapiṇḍika Pre-sectarian Buddhism Kingdom ...

 

 

Social worker Not to be confused with Begum Akhtar or Begum Akhtar Riazuddin. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Begum Akhtar Sulaiman – news · newspapers · books · scholar · JSTOR (October 2014) (Learn how and when to remove this template message) Begum Akhtar SulaimanPakistani Political Activi...

В Википедии есть статьи о других людях с фамилией Садовников. Дмитрий Николаевич Садовников Дата рождения 25 апреля (7 мая) 1847(1847-05-07) Место рождения Симбирск, Симбирская губерния, Российская империя Дата смерти 19 (31) декабря 1883(1883-12-31) (36 лет) Место смерти Санкт-Петербург, Рос�...

 

 

Ne doit pas être confondu avec Parti de la loi naturelle. Cet article est une ébauche concernant la philosophie et le droit. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. La loi naturelle (ou loi de la nature) désigne, en philosophie et en physique, l'ensemble des lois qui régissent la nature. Objets de réflexions philosophiques, la moderni...

 

 

Kembali kehalaman sebelumnya