Share to: share facebook share twitter share wa share telegram print page

Unimodular matrix

In mathematics, a unimodular matrix M is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers: there is an integer matrix N that is its inverse (these are equivalent under Cramer's rule). Thus every equation Mx = b, where M and b both have integer components and M is unimodular, has an integer solution. The n × n unimodular matrices form a group called the n × n general linear group over , which is denoted .

Examples of unimodular matrices

Unimodular matrices form a subgroup of the general linear group under matrix multiplication, i.e. the following matrices are unimodular:

Other examples include:

Total unimodularity

A totally unimodular matrix[1] (TU matrix) is a matrix for which every square non-singular submatrix is unimodular. Equivalently, every square submatrix has determinant 0, +1 or −1. A totally unimodular matrix need not be square itself. From the definition it follows that any submatrix of a totally unimodular matrix is itself totally unimodular (TU). Furthermore it follows that any TU matrix has only 0, +1 or −1 entries. The converse is not true, i.e., a matrix with only 0, +1 or −1 entries is not necessarily unimodular. A matrix is TU if and only if its transpose is TU.

Totally unimodular matrices are extremely important in polyhedral combinatorics and combinatorial optimization since they give a quick way to verify that a linear program is integral (has an integral optimum, when any optimum exists). Specifically, if A is TU and b is integral, then linear programs of forms like or have integral optima, for any c. Hence if A is totally unimodular and b is integral, every extreme point of the feasible region (e.g. ) is integral and thus the feasible region is an integral polyhedron.

Common totally unimodular matrices

1. The unoriented incidence matrix of a bipartite graph, which is the coefficient matrix for bipartite matching, is totally unimodular (TU). (The unoriented incidence matrix of a non-bipartite graph is not TU.) More generally, in the appendix to a paper by Heller and Tompkins,[2] A.J. Hoffman and D. Gale prove the following. Let be an m by n matrix whose rows can be partitioned into two disjoint sets and . Then the following four conditions together are sufficient for A to be totally unimodular:

  • Every entry in is 0, +1, or −1;
  • Every column of contains at most two non-zero (i.e., +1 or −1) entries;
  • If two non-zero entries in a column of have the same sign, then the row of one is in , and the other in ;
  • If two non-zero entries in a column of have opposite signs, then the rows of both are in , or both in .

It was realized later that these conditions define an incidence matrix of a balanced signed graph; thus, this example says that the incidence matrix of a signed graph is totally unimodular if the signed graph is balanced. The converse is valid for signed graphs without half edges (this generalizes the property of the unoriented incidence matrix of a graph).[3]

2. The constraints of maximum flow and minimum cost flow problems yield a coefficient matrix with these properties (and with empty C). Thus, such network flow problems with bounded integer capacities have an integral optimal value. Note that this does not apply to multi-commodity flow problems, in which it is possible to have fractional optimal value even with bounded integer capacities.

3. The consecutive-ones property: if A is (or can be permuted into) a 0-1 matrix in which for every row, the 1s appear consecutively, then A is TU. (The same holds for columns since the transpose of a TU matrix is also TU.) [4]

4. Every network matrix is TU. The rows of a network matrix correspond to a tree T = (V, R), each of whose arcs has an arbitrary orientation (it is not necessary that there exist a root vertex r such that the tree is "rooted into r" or "out of r").The columns correspond to another set C of arcs on the same vertex set V. To compute the entry at row R and column C = st, look at the s-to-t path P in T; then the entry is:

  • +1 if arc R appears forward in P,
  • −1 if arc R appears backwards in P,
  • 0 if arc R does not appear in P.

See more in Schrijver (2003).

5. Ghouila-Houri showed that a matrix is TU iff for every subset R of rows, there is an assignment of signs to rows so that the signed sum (which is a row vector of the same width as the matrix) has all its entries in (i.e. the row-submatrix has discrepancy at most one). This and several other if-and-only-if characterizations are proven in Schrijver (1998).

6. Hoffman and Kruskal[5] proved the following theorem. Suppose is a directed graph without 2-dicycles, is the set of all dipaths in , and is the 0-1 incidence matrix of versus . Then is totally unimodular if and only if every simple arbitrarily-oriented cycle in consists of alternating forwards and backwards arcs.

7. Suppose a matrix has 0-(1) entries and in each column, the entries are non-decreasing from top to bottom (so all −1s are on top, then 0s, then 1s are on the bottom). Fujishige showed[6] that the matrix is TU iff every 2-by-2 submatrix has determinant in .

8. Seymour (1980)[7] proved a full characterization of all TU matrices, which we describe here only informally. Seymour's theorem is that a matrix is TU if and only if it is a certain natural combination of some network matrices and some copies of a particular 5-by-5 TU matrix.

Concrete examples

1. The following matrix is totally unimodular:

This matrix arises as the coefficient matrix of the constraints in the linear programming formulation of the maximum flow problem on the following network:

2. Any matrix of the form

is not totally unimodular, since it has a square submatrix of determinant −2.

Abstract linear algebra

Abstract linear algebra considers matrices with entries from any commutative ring , not limited to the integers. In this context, a unimodular matrix is one that is invertible over the ring; equivalently, whose determinant is a unit. This group is denoted .[8] A rectangular -by- matrix is said to be unimodular if it can be extended with rows in to a unimodular square matrix.[9][10][11]

Over a field, unimodular has the same meaning as non-singular. Unimodular here refers to matrices with coefficients in some ring (often the integers) which are invertible over that ring, and one uses non-singular to mean matrices that are invertible over the field.

See also

Notes

  1. ^ The term was coined by Claude Berge, see Hoffman, A.J.; Kruskal, J. (2010), "Introduction to Integral Boundary Points of Convex Polyhedra", in M. Jünger; et al. (eds.), 50 Years of Integer Programming, 1958-2008, Springer-Verlag, pp. 49–50
  2. ^ Heller, I.; Tompkins, C.B. (1956), "An Extension of a Theorem of Dantzig's", in Kuhn, H.W.; Tucker, A.W. (eds.), Linear Inequalities and Related Systems, Annals of Mathematics Studies, vol. 38, Princeton (NJ): Princeton University Press, pp. 247–254
  3. ^ T. Zaslavsky (1982), "Signed graphs," Discrete Applied Mathematics 4, pp. 401–406.
  4. ^ Fulkerson, D. R.; Gross, O. A. (1965). "Incidence matrices and interval graphs". Pacific Journal of Mathematics. 15 (3): 835–855. ISSN 0030-8730.
  5. ^ Hoffman, A.J.; Kruskal, J.B. (1956), "Integral Boundary Points of Convex Polyhedra", in Kuhn, H.W.; Tucker, A.W. (eds.), Linear Inequalities and Related Systems, Annals of Mathematics Studies, vol. 38, Princeton (NJ): Princeton University Press, pp. 223–246
  6. ^ Fujishige, Satoru (1984), "A System of Linear inequalities with a Submodular Function on (0, ±1) Vectors", Linear Algebra and Its Applications, 63: 253–266, doi:10.1016/0024-3795(84)90147-2
  7. ^ Seymour, P. D. (1980), "Decomposition of regular matroids", Journal of Combinatorial Theory, Series B, 28 (3): 305–359, doi:10.1016/0095-8956(80)90075-1
  8. ^ Lang, Serge (2002). Algebra (rev. 3rd ed.). Springer. p. 510, Section XIII.3. ISBN 0-387-95385-X.
  9. ^ Rosenthal, J.; Maze, G.; Wagner, U. (2011), Natural Density of Rectangular Unimodular Integer Matrices, Linear Algebra and its applications, vol. 434, Elsevier, pp. 1319–1324
  10. ^ Micheli, G.; Schnyder, R. (2016), The density of unimodular matrices over integrally closed subrings of function fields, Contemporary Developments in Finite Fields and Applications, World Scientific, pp. 244–253
  11. ^ Guo, X.; Yang, G. (2013), The probability of rectangular unimodular matrices over Fq [x], Linear algebra and its applications, Elsevier, pp. 2675–2682

References

Read other articles:

Lagoa das Sete Cidades, São Miguel Island, Azores Although some lakes occur in mainland Portugal, most of these bodies of water are native to the archipelago of the Azores. A large part of the lakes present in mainland Portugal are artificial and the result of damming. Most natural lakes in the mainland can be found in Serra da Estrela. Madeira has small bodies of water (ponds), an thus does not meet the criteria for inclusion in this list. The word lake can be directly translated into the P...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Jade BirdBird pada 2018Informasi latar belakangNama lahirJade Elizabeth BirdLahir01 Oktober 1997 (umur 26)[1][2]Hexham, Northumberland, InggrisAsalCroydon, London Selatan[3]Genre Amerikana indie folk rock country Pekerjaan...

 

 

Wisconsin museum MMBT exterior. The Madison Museum of Bathroom Tissue was established in 1992 and closed in 2000. The museum was founded by Carol Kolb[1] in Madison, Wisconsin in a second-floor apartment, three blocks from the Wisconsin State Capitol.[2][3][4][5] At its peak, the MMBT's permanent collection contained approximately 3,000 rolls of toilet paper.[6] The toilet paper's origins ranged from the bathrooms of other museums, like the Metr...

United States historic placeCedar CliffU.S. National Register of Historic Places Show map of KansasShow map of the United StatesLocation501 N. 9th St., Garden City, KansasCoordinates37°58′11″N 100°52′35″W / 37.96972°N 100.87639°W / 37.96972; -100.87639Arealess than one acreBuilt1909Built byEdward FinnupArchitectural styleDutch Colonial RevivalNRHP reference No.97000464[1]Added to NRHPMay 23, 1997 Cedar Cliff, a house at 501 N. 9th St....

 

 

Department of Environment and Local GovernmentAgency overviewFormed15 March 2012 (2012-03-15)JurisdictionNew BrunswickParent departmentGovernment of New BrunswickThe Department of Environment and Local Government is a part of the Government of New Brunswick. It is charged with maintaining relationships with New Brunswick's municipalities, administering its unincorporated Local Service Districts and the administration of its environmental policy, including the Province's Environ...

 

 

Direktorat Jenderal Pemberdayaan Sosial Kementerian Sosial Republik IndonesiaGambaran umumDasar hukumPeraturan Presiden Nomor 46 Tahun 2015Bidang tugasmenyelenggarakan perumusan dan pelaksanaan kebijakan di bidang pemberdayaan sosialSusunan organisasiDirektur Jenderal-Situs webhttp://www.kemsos.go.id Direktorat Jenderal Pemberdayaan Sosial merupakan unsur pelaksana pada Kementerian Sosial Republik Indonesia yang berada di bawah dan bertanggung jawab kepada Menteri Sosial Republik Indones...

Lingen kan verwijzen naar: Lingen (Ems), een stad in de Duitse deelstaat Nedersaksen Lingen (Herefordshire), een plaats in Engeland Graafschap Lingen, een voormalig graafschap in het Heilige Roomse Rijk Kerncentrale Lingen, een kerncentrale bij de Duitse stad Lingen Landkreis Lingen, een voormalig district in de Duitse deelstaat Nedersaksen, tegenwoordig onderdeel van het district Emsland Bekijk alle artikelen waarvan de titel begint met Lingen of met Lingen in de tit...

 

 

Một phần của một loạt bài vềĐại dịch COVID-19 SARS-CoV-2 (virus) COVID-19 (bệnh) Dòng thời gian 2019 2020 Th1 2 3 4 5 6 7 8 9 10 11 12 2021 Th1 2 3 4 5 6 7 8 9 10 11 12 2022 Th1 2 3 4 5 6 7 8 9 10 11 12 2023 Các địa điểm Theo quốc gia và vùng lãnh thổ Châu Á Châu Âu Châu Đại Dương Châu Nam Cực Bắc Mỹ Nam Mỹ Châu Phi Theo phương tiện vận chuyển Tàu du lịch Phản ứng quốc tế Giãn cách xã hội Phong tỏa Phương ph�...

 

 

Cambridgeshire Provinsi di Inggris Cambridgeshire (en) Tempat Negara berdaulatInggris RayaNegara konstituen di Britania RayaInggrisWilayah di InggrisInggris Timur NegaraInggris Raya Ibu kotaCambridge Pembagian administratifCambridgeshire (en) City of Peterborough (en) PendudukTotal859.830  (2020 )GeografiLuas wilayah3.389,6122 km² [convert: unit tak dikenal]Berbatasan denganHertfordshire Essex Lincolnshire Norfolk Suffolk Bedfordshire Northamptonshire Informasi tambahanISO 3166-2ta...

Philydraceae Helmholtzia glaberrima Klasifikasi ilmiah Kerajaan: Plantae Divisi: Magnoliophyta (tanpa takson): Monokotil (tanpa takson): Commelinids Ordo: Commelinales Famili: Philydraceae Genera lihat teks. Philydraceae adalah salah satu suku anggota tumbuhan berbunga. Menurut sistem klasifikasi APG II suku ini termasuk ke dalam bangsa Commelinales, klad commelinids. Wikimedia Commons memiliki media mengenai Philydraceae. Pengidentifikasi takson Wikidata: Q131506 Wikispecies: Philydraceae AP...

 

 

Final Liga Champions UEFA 2020Sampul program pertandinganTurnamenLiga Champions UEFA 2019–2020 Paris Saint-Germain Bayern München 0 1 Tanggal23 Agustus 2020 (2020-08-23)StadionEstádio da Luz, LisboaPemain Terbaik Kingsley Coman (Bayern München)[1]WasitDaniele Orsato (Italia)[2]Penonton0[cat. 1]CuacaMalam cerah25 °C (77 °F)53% kelembapan[3]← 2019 2021 → Identitas resmi Final Liga Champions UEFA 2020 sebelum lokasi pertandingan d...

 

 

Ten artykuł dotyczy wojewody płockiego. Zobacz też: Inne osoby o tym imieniu i nazwisku. Stanisław Krasiński Portret S. Krasińskiego autorstwa A. Ziemięckiego Ślepowron Rodzina Krasińscy herbu Ślepowron Data urodzenia 1558 Data śmierci 1 lutego 1617 Ojciec Andrzej Krasiński Matka Katarzyna Czernicka Żona Anna Michowska Dzieci Jan Kazimierz KrasińskiGabriel KrasińskiLudwik KrasińskiZofia Nagrobek Stanisława Krasińskiego w katedrze płockiej Stanisław Krasiński herbu Ślepow...

Ministre de la Famille, des Enfants et du Développement social(en) Minister of Families, Children and Social Development Titulaire actuelJenna Suddsdepuis le 26 juillet 2023 Création 12 décembre 2003 Titre L'honorable Mandant Sa Majesté du chef du Canada Durée du mandat Au plaisir de Sa Majesté Premier titulaire Liza Frulla Rémunération 255 300 $ CA annuellement Site internet www.hrsdc.gc.ca modifier  Le ministre de la Famille, des Enfants et du Développement social (anglais...

 

 

Soccer clubFull nameDallas City Football ClubNickname(s)DCFCFounded2013; 10 years ago (2013)GroundDCFC McKinney Soccer Complex (McKinney, Texas)OwnerJacob Serdar TuygunManagerRahim ZaferLeagueNational Premier Soccer LeagueWebsiteClub website Dallas City FC (DCFC) is an American soccer club based in McKinney, Texas. DCFC competes in the National Premier Soccer League (NPSL) as a member of the Heartland Conference of the South Region.[1][2] The club changed the...

 

 

Demographics of country This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Demographics of Samoa – news · newspapers · books · scholar · JSTOR (September 2016) (Learn how and when to remove this template message)Demographics of SamoaPopulation pyramid of Samoa in 2020Population206,179 (2022 est.)Growth rate0.63...

Chinese railway station Renhe Road仁和路General informationLocationHongshan District, Wuhan, HubeiChinaOperated byWuhan Metro Co., LtdLine(s)     Line 4Platforms2 (1 island platform)ConstructionStructure typeUndergroundHistoryOpenedDecember 28, 2013 (Line 4)Services Preceding station Wuhan Metro Following station Yuanlin Roadtowards Bailin Line 4 Gongye 4th Roadtowards Wuhan Railway Station Renhe Road Station (Chinese: 仁和路站), is a station of Line 4 of W...

 

 

  سانتا كروز دي لوس كانياموس (بالإسبانية: Santa Cruz de los Cáñamos)‏[1]   - بلدية -    سانتا كروز دي لوس كانياموس (سيوداد ريال) سانتا كروز دي لوس كانياموس (سيوداد ريال) تقسيم إداري البلد إسبانيا  [2] المقاطعة مقاطعة ثيوداد ريال خصائص جغرافية إحداثيات 38°38′16″N 2�...

 

 

Coastal fortification in Normandy, France Merville Gun BatteryPart of Atlantic WallNormandy, France Largest casemate of the Merville Battery todayTypeArtillery batterySite informationOwner Nazi Germany1942–44  France1944–presentOpen tothe publicYesConditionSeveral casemates and trench systemSite historyBuiltWorld War IIBuilt byOrganisation TodtIn use1942-1944MaterialsConcrete, steel, barbed wireBattles/warsNormandy landings, Operation TongaGarrison informatio...

De finale van het Europees kampioenschap voetbal 2000 werd gehouden op 2 juli 2000 in het De Kuip in Rotterdam. Toenmalig wereldkampioen Frankrijk, dat de trofee in 1984 al eens had gewonnen, nam het op tegen Italië, de winnaar uit 1968. Frankrijk versloeg Italië met 2-1. In de verlenging scoorde David Trezeguet het winnende doelpunt. Route naar de finale Route naar de finale Frankrijk   Italië EK 2000 – Kwalificatie Reykjavik, 5 september 1998 IJsland  1 – 1  Frank...

 

 

University in India Harichand Guruchand UniversityMottoKnowledge is powerTypePublicEstablished11 January 2019; 4 years ago (2019-01-11)AffiliationUGCChancellorGovernor of West BengalVice-ChancellorTapan Kumar BiswasLocationGaighata, North 24 Parganas district, West Bengal, India22°59′03″N 88°46′51″E / 22.9843°N 88.7809°E / 22.9843; 88.7809Websiteharichandguruchanduniversity.com Harichand Guruchand University (Bengali: হরিচাঁদ...

 

 

Kembali kehalaman sebelumnya