In probability theory and directional statistics , a wrapped Lévy distribution is a wrapped probability distribution that results from the "wrapping" of the Lévy distribution around the unit circle .
Description
The pdf of the wrapped Lévy distribution is
f
W
L
(
θ θ -->
;
μ μ -->
,
c
)
=
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
c
2
π π -->
e
− − -->
c
/
2
(
θ θ -->
+
2
π π -->
n
− − -->
μ μ -->
)
(
θ θ -->
+
2
π π -->
n
− − -->
μ μ -->
)
3
/
2
{\displaystyle f_{WL}(\theta ;\mu ,c)=\sum _{n=-\infty }^{\infty }{\sqrt {\frac {c}{2\pi }}}\,{\frac {e^{-c/2(\theta +2\pi n-\mu )}}{(\theta +2\pi n-\mu )^{3/2}}}}
where the value of the summand is taken to be zero when
θ θ -->
+
2
π π -->
n
− − -->
μ μ -->
≤ ≤ -->
0
{\displaystyle \theta +2\pi n-\mu \leq 0}
,
c
{\displaystyle c}
is the scale factor and
μ μ -->
{\displaystyle \mu }
is the location parameter. Expressing the above pdf in terms of the characteristic function of the Lévy distribution yields:
f
W
L
(
θ θ -->
;
μ μ -->
,
c
)
=
1
2
π π -->
∑ ∑ -->
n
=
− − -->
∞ ∞ -->
∞ ∞ -->
e
− − -->
i
n
(
θ θ -->
− − -->
μ μ -->
)
− − -->
c
|
n
|
(
1
− − -->
i
sgn
-->
n
)
=
1
2
π π -->
(
1
+
2
∑ ∑ -->
n
=
1
∞ ∞ -->
e
− − -->
c
n
cos
-->
(
n
(
θ θ -->
− − -->
μ μ -->
)
− − -->
c
n
)
)
{\displaystyle f_{WL}(\theta ;\mu ,c)={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }e^{-in(\theta -\mu )-{\sqrt {c|n|}}\,(1-i\operatorname {sgn} {n})}={\frac {1}{2\pi }}\left(1+2\sum _{n=1}^{\infty }e^{-{\sqrt {cn}}}\cos \left(n(\theta -\mu )-{\sqrt {cn}}\,\right)\right)}
In terms of the circular variable
z
=
e
i
θ θ -->
{\displaystyle z=e^{i\theta }}
the circular moments of the wrapped Lévy distribution are the characteristic function of the Lévy distribution evaluated at integer arguments:
⟨ ⟨ -->
z
n
⟩ ⟩ -->
=
∫ ∫ -->
Γ Γ -->
e
i
n
θ θ -->
f
W
L
(
θ θ -->
;
μ μ -->
,
c
)
d
θ θ -->
=
e
i
n
μ μ -->
− − -->
c
|
n
|
(
1
− − -->
i
sgn
-->
(
n
)
)
.
{\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta }\,f_{WL}(\theta ;\mu ,c)\,d\theta =e^{in\mu -{\sqrt {c|n|}}\,(1-i\operatorname {sgn}(n))}.}
where
Γ Γ -->
{\displaystyle \Gamma \,}
is some interval of length
2
π π -->
{\displaystyle 2\pi }
. The first moment is then the expectation value of z , also known as the mean resultant, or mean resultant vector:
⟨ ⟨ -->
z
⟩ ⟩ -->
=
e
i
μ μ -->
− − -->
c
(
1
− − -->
i
)
{\displaystyle \langle z\rangle =e^{i\mu -{\sqrt {c}}(1-i)}}
The mean angle is
θ θ -->
μ μ -->
=
A
r
g
⟨ ⟨ -->
z
⟩ ⟩ -->
=
μ μ -->
+
c
{\displaystyle \theta _{\mu }=\mathrm {Arg} \langle z\rangle =\mu +{\sqrt {c}}}
and the length of the mean resultant is
R
=
|
⟨ ⟨ -->
z
⟩ ⟩ -->
|
=
e
− − -->
c
{\displaystyle R=|\langle z\rangle |=e^{-{\sqrt {c}}}}
See also
References
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families