The acyclic form of xylose has chemical formulaHOCH 2(CH(OH))3CHO. The cyclic hemiacetal isomers are more prevalent in solution and are of two types: the pyranoses, which feature six-membered C 5O rings, and the furanoses, which feature five-membered C 4O rings (with a pendant CH 2OH group). Each of these rings is subject to further isomerism, depending on the relative orientation of the anomeric hydroxy group.
Xylose is the main building block for the hemicellulosexylan, which comprises about 30% of some plants (birch for example), far less in others (spruce and pine have about 9% xylan). Xylose is otherwise pervasive, being found in the embryos of most edible plants. It was first isolated from wood by Finnish scientist, Koch, in 1881,[3] but first became commercially viable, with a price close to sucrose, in 1930.[4]
Xylose is also found in some species of Chrysolinina beetles, including Chrysolina coerulans. They have cardiac glycosides (including xylose) in their defensive glands.[6]
Applications
Chemicals
The acid-catalysed degradation of hemicellulose gives furfural,[7][8] a precursor to synthetic polymers and to tetrahydrofuran.[9]
Human consumption
Xylose is metabolised by humans, although it is not a major human nutrient and is largely excreted by the kidneys.[10] Humans can obtain xylose only from their diet. An oxidoreductase pathway is present in eukaryotic microorganisms. Humans have enzymes called protein xylosyltransferases (XYLT1, XYLT2) which transfer xylose from UDP to a serine in the core protein of proteoglycans.
Xylose contains 2.4 calories per gram[11] (lower than glucose or sucrose, approx. 4 calories per gram).
Animal medicine
In animal medicine, xylose is used to test for malabsorption by administration in water to the patient after fasting. If xylose is detected in blood and/or urine within the next few hours, it has been absorbed by the intestines.[12]
High xylose intake on the order of approximately 100 g/kg of animal body weight is relatively well tolerated in pigs, and in a similar manner to results from human studies, a portion of the xylose intake is passed out in urine undigested.[13]
^Gómez Millán, Gerardo; Hellsten, Sanna; King, Alistair W.T.; Pokki, Juha-Pekka; Llorca, Jordi; Sixta, Herbert (25 April 2019). "A comparative study of water-immiscible organic solvents in the production of furfural from xylose and birch hydrolysate". Journal of Industrial and Engineering Chemistry. 72: 354–363. doi:10.1016/j.jiec.2018.12.037. hdl:10138/307298. S2CID104358224.