Zoltan George Hajos (born Zoltán György Hajós; 3 March 1926 – 9 October 2022) was a Hungarian-American organic chemist. Originally an academic in his native Budapest, then an industrial chemist in the pharmaceutical industry, he is known for the Hajos–Parrish–Eder–Sauer–Wiechert reaction (originally named Hajos-Parrish reaction by Claude Agami in 1985[1]).
Biography
Chemistry training
Hajos studied chemistry at the Technical University of Budapest (TU Budapest), in Hungary, completing an M.Sc. in 1947,[2] and his doctoral work under Zoltan Csuros of the Institute of Organic Chemical Technology in 1950.[2]
Early academic career
Hajos remained there until accepting a position as assistant professor in organic chemistry at the TU Budapest in 1948, where he stayed until 1957.[3][4] With backlash following the 1956 Revolution in October, 1956,[5] Hajos left TU Budapest and communist Hungary for the United States, where he took a position as a research associate in organic chemistry, a senior postdoctoral-level position, in the Department of Chemistry at Princeton University, beginning in 1957.[3]
Second academic and pharmaceutical periods
Hajos accepted a chemistry position with the Pharmaceutical Research Institute of Hoffmann-La Roche, a pharmaceutical company, in Nutley, New Jersey, in 1960.[3] He remained in that position until beginning a second phase of an academic career in 1970, first in the Chemistry Department of the University of Vermont (1972–1973), and thereafter on the Faculty of Pharmacy of the University of Toronto (1973–1974).[3] Hajos returned to the pharmaceutical industry in 1975, proceeding through a series of positions at the Research Institute of Johnson & Johnson, until retiring in 1990.[3]
Research
Hajos–Parrish–Eder–Sauer–Wiechert reaction, discovery and importance
"This reaction was independently reported by two groups in 1971: the group of Hajos and Parrish [citing a German patent dated 29 July 1971[9]] and the group of Eder, Sauer, and Wiechert [citing a German patent dated October 7, 1971, and a 1971 journal report in German and English translation[10][11][12]]. It is an enantioselective [a]ldol [r]eaction catalyzed by (S)-proline… [and is] one of the earliest enantioselectively catalyzed reactions of practical use in synthetic organic chemistry. Owing to its wide application in organic synthesis, it has been extensively explored and extended to asymmetric [a]ldol... α-alkylation… Mannich... Michael [a]ddition... and α-amination… [reactions] of carbonyl compounds. In the literature, this reaction has been referred to by different names: [as the Hajos–Parrish–Eder–Sauer–Wiechert reaction]... Hajos-Eder-Sauer-Wiechert... Hajos-Wiechert... and Hajos-Parrish-Wiechert reactions."[13]
Nobel Prize laureate in Chemistry 2021 Benjamin List, a leader in the modern field of organocatalysis,[14] describes the importance of the discovery of the Hajos–Parrish–Eder–Sauer–Wiechert reaction thus:
"Discovered in the early 1970s, the Hajos–Parrish–Eder–Sauer–Wiechert reaction, a proline-catalyzed intramolecular aldol reaction [citing journal articles Hajos & Parrish (1974a) and Eder, Sauer & Wiechert (1971b)[11][15]], represents not only the first asymmetric aldol reaction invented by chemists but also the first highly enantioselective organocatalytic transformation.[16]
Personal life and death
Hajos died in Budapest on 9 October 2022, at the age of 96.[17]
Awards and recognition
Hajos received a Certificate of Merit, an Iron Award, from TU Budapest in May 2013, in recognition of 65 years of professional service.[2]
Hajos received a Certificate of Merit, a Ruby Award, from TU Budapest in 2017, in recognition of 70 years of professional service. [18]
Hajos received a Certificate of Merit, a Platinum Award, from TU Budapest in 2022, in recognition of 75 years of professional service. [19]
Hajos, Zoltan G.; Parrish, David R. (1974). "Asymmetric synthesis of bicyclic intermediates of natural product chemistry". The Journal of Organic Chemistry. 39 (12). American Chemical Society (ACS): 1615–1621. doi:10.1021/jo00925a003. ISSN0022-3263.
Hajos, Zoltan G.; Parrish, David R. (1974). "Synthesis and conversion of 2-methyl-2-(3-oxobutyl)-1,3-cyclopentanedione to the isomeric racemic ketols of the [3.2.1]bicyclooctane and of the perhydroindane series". The Journal of Organic Chemistry. 39 (12). American Chemical Society (ACS): 1612–1615. doi:10.1021/jo00925a002. ISSN0022-3263.
Kendall, Edward C.; Hajos, Zoltan G. (1960). "Tetrahydro-3,4-Furandione. I. Preparation and Properties". Journal of the American Chemical Society. 82 (12). American Chemical Society (ACS): 3219–3220. doi:10.1021/ja01497a059. ISSN0002-7863.
Micheli, Robert A.; Hojos, Zoltan G.; Cohen, Noal; Parrish, David R.; Portland, Louis A.; Sciamanna, Werner; Scott, Melinda A.; Wehrli, Pius A. (21 March 1975). "Total syntheses of optically active 19-nor steroids. (+)-Estr-4-ene-3,17-dione and (+)-13.beta.-ethylgon-4-ene-3,17-dione". The Journal of Organic Chemistry. 40 (6). American Chemical Society (ACS): 675–681. doi:10.1021/jo00894a003. ISSN0022-3263. PMID1133631.
Press, Jeffery B.; Falotico, Robert; Hajos, Zoltan G.; Sawyers, Rebecca Anne; Kanojia, Ramesh M.; Williams, Louella; Haertlein, Barbara; Kauffman, Jack A.; Lakas-Weiss, Constance; Salata, Joseph J. (1992). "Synthesis and structure-activity relationship of 6-substituted purine derivatives as novel selective positive inotropes". Journal of Medicinal Chemistry. 35 (24). American Chemical Society (ACS): 4509–4515. doi:10.1021/jm00102a001. ISSN0022-2623. PMID1335073.
References
^Agami, Claude; Levisalles, Jacques; Puchot, Catherine (1985). "A new diagnostic tool for elucidating the mechanism of enantioselective reactions. Application to the Hajos–Parrish reaction". J. Chem. Soc., Chem. Commun. (8). Royal Society of Chemistry (RSC): 441–442. doi:10.1039/c39850000441. ISSN0022-4936.
^László Kürti, Barbara Czakó: Strategic Applications of Named Reactions in Organic Synthesis. Elsevier Academic Press, Burlington/San Diego/London 2005, ISBN0-12-369483-3, p. 192-193.
^Jonathan Clayden, Nick Greeves, Stuart Warren: Organische Chemie, Springer Spektrum, 2013, 2. Auflage, pp. 1240–1241. ISBN978-3-642-34715-3.
^Hajos, Z. G. and Parrish, D. R., Ger. Pat., July 29, 1971, DE 2102623, (priority date Jan. 21, 1970).
^Eder, U.; Sauer, G. and Wiechert, R., Ger. Pat., Oct 7, 1971a, DE 2014757.
^ abEder, Ulrich; Sauer, Gerhard; Wiechert, Rudolf (1971b). "New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures". Angewandte Chemie International Edition in English. 10 (7). Wiley: 496–497. doi:10.1002/anie.197104961. ISSN0570-0833.
^Eder, Ulrich; Sauer, Gerhard; Wiechert, Rudolf (1971a). "Neuartige asymmetrische Cyclisierung zu optisch aktiven Steroid-CD-Teilstücken". Angewandte Chemie (in German). 83 (13). Wiley: 492–493. Bibcode:1971AngCh..83..492E. doi:10.1002/ange.19710831307. ISSN0044-8249.
^Zerong Wang, 2010, "290. Hajos-Parrish-Eder-Sauer-Wiechert Reaction," in Comprehensive Organic Name Reactions and Reagents, pp. 1305–1309, New York, NY, USA:John Wiley & Sons, doi:10.1002/9780470638859.conrr290.
^Pietschmann, Catarina (6 October 2021). "A Perspective for Life". Max-Planck-Gesellschaft. Retrieved 7 October 2021.
^Hajos, Zoltan G.; Parrish, David R. (1974a). "Asymmetric synthesis of bicyclic intermediates of natural product chemistry". The Journal of Organic Chemistry. 39 (12). American Chemical Society (ACS): 1615–1621. doi:10.1021/jo00925a003. ISSN0022-3263.