W estas la elektra laboro (mezurita en ĵulo, simbolo J),
U estas la elektra tensio (mezurita en volto, simbolo V),
t estas la tempo (mezurita en sekundo, simbolo s).
Elektra energio (kiel iu ajn alia energio) ne povas nuliĝi nek produktiĝi per si mem, sed laŭ la principo de konservado de energio per ia sistemo povas esti transformata al alia energia formo (ekz. meĥanika energio).
Alia kutima tre uzata unuo (sed ne SI-unuo), pri grandaj kvantoj da elektra energio, estas la kilovathoro (simbolo kWh):
1 kWh = 103 . 3600 J = 3,6 . 106 J = 3,6 MJ .
Povumo
La povumo estas la la kvanto da la laboro liverita dum la unuo da tempo. La averaĝa povumo dum daŭro estas :
Sekvas, ke la momenta povumo estas la derivaĵo de la laboro (inverse oni povas konsideri la laboron, kiel integralon de la momenta povumo dum donita tempo):
Konsideru stangon de konduktanto kun tranversa sekco A, kaj longo l12 (vidi bildon) trairata de kontinua kurentoI; plie aplikata elektra kampoE estas uniforma kaj orientata laŭ la longo de la konduktanto, kaj ankaŭ ekstera elektra kampoEeks orientata laŭ la longo, kiu povas krei induktitan elektromovan forton vektore adiciantan al la tensiofonto, la rezultanta kampo tiel estas :
Fare de la simetrio de la konduktilo, oni povas neglekti la radiadan energion:
Por hejti domojn (eĉ hejti manĝaĵojn), uzi elektron ne estas efika apliko de elektro. Fakte, la plimulto da elektro originas de centraloj, kiuj jam kreas varmon por uzi premon de akvovaporo kaj tiel produkti elektron per bruligo de karbo, nafto, gaso, aŭ per disigo de uraniaj atomoj; estas energiaj perdoj por distribui tian elektron kaj poste por rekrei varmon. Do la efikeco de la uzo de tiaj brulaĵoj estas malalta.
Por lumigi, uzi elektran energion plej taŭgas, malgraŭ ke oni hejtas, ĝis pluraj miloj de gradoj (vidu leĝo de Wien), filamentojn de inkandeskaj lampoj, kiuj tial radiadas lumon. Se oni konsideras la tutan elektrokonsumadon, la konsumado de elektro por lumigi estas nur malgranda frakcio el ĝi. Plie per elektrolampoj oni povas krei multegajn artajn efektojn, kiuj foje povas esti priskribitaj kiel feaj iluminadoj.
Konsideru du platojn de kondensatoro kun surfaco S, kaj distanco d inter platoj, pri kiuj aplikita elektra kampoE estas uniforma kaj orientita perpendikulare al la ebenoj de la platoj:
kie n estas la vektoro normala al plato, paralele al vektoro dl:
la elektrostatika energio stokata en la kondensatoro estas do:
Aplikoj
En elektronikaj aparatoj, pri kiuj la tensio estas malalta, kondensiloj kun grandaj valoroj kaj malgrandaj perdadoj ofte anstataŭas pilojn aŭ akumulatorojn, por provizi malgrandajn kurentoj dum longa tempo (ekzemple, superkondensatoro rapide ŝargita, tre malrapide malŝarganta).
la magnetostatika energio stokita en la solenoido estas do:
Aplikoj
En elektroteĥniko povumaj superkonduktivajelektromagnetoj permesas stoki energion. Oni ŝargas ilin kiam energio estas malmultekosta, kaj uzas ĝin laŭ bezonoj; tiu principo estas uzata por superkonduktiva magneta energio-stokado (SMES[1]). Superkonduktiva bobeno estas konektita al elektra reto per inversebla konvertero (de alterna al kontinua kurento kaj reciproke). Kontinua kurento de la bobeno estas provizita per rektifilo[2], kiu permesas stoki energion sub la formo ½ L.I2. Laŭ bezono (ekz. elektra retodifekto), la magneta energio stokita (sen perdado) en suprakonduktiva bobeno retroiras al la elektra reto per inversigilo, kiu konvertas la kontinuan kurenton en alternan. Ekzistas pluraj povumaj SMES en la mondo, ekzemple en Usono (Viskonsino), Japanio kaj Francio (Grenoblo[3]).
En sanscienco, la magneta resonanca bildigo (MRB), nomita magnetic resonance imaging (MRI) en la angla lingvo, uzas superkonduktivan elektromagnetan bobenon, por provizi la forta magneta indukdenso, kiu ĉirkaŭas la pacienton. En la hospitaloj ne bezonas povuman elektran aparaton, la elektromagneto estas liverita kun jam ĝia alta kurento, ĝia drato baniĝas en likva heliumo; bezonas nur regule (ekz. ĉiuj 3 monatoj) plenigi la heliumujon (per vazo de Dewar).
Konduktilo, tra kiu pasas kurento I, estas submetita al Laplaca forto, kiu povas movi la konduktilon.
Konsideru konduktilon, kun longo L tra kiu estas kurento I, submetitan al perpendikla forto F, fare de magneta indukdensoB:
La laboro de tiu forto, dum movo paralela al la direkto de la forto, estas:
kaj dum tia movo, la vario de flukso estas:
do
Sola konduktilo kun kurento de unika senco ne estas kutima, normale la kurento cirkulas en buklo (vidu ĉi apuda bildo de rotoro).
Tiam, estas kuplo de du fortoj, la forto de la ira konduktilo kaj la forto de la revena konduktilo
[4]. La momantoj de fortoj de la du fortoj (al distanco r de la akso) adiciiĝas; la laboro de tiuj du fortoj, pri elementa rotacio , estas:
la laboro pri rotacio de 180° estas:
kie : estas la maksimuma flukso kiu trairis la buklon.
Rimarku ke la forto dependas de la kontraŭstaranta ŝargo.
La propago de tiu energio konsistas en oscilado (perpendikle al la ondodirekto) de la elektra kampo kaj de la magneta kampo je frekvenco f. Laŭ la kvantuma teorio, la interago kun materialo ne estas kontinua, sed per elementaj kvantumoj, kies energio estas:
Inverse, ekstera elektromagneta energio povas krei elektran energion. Ekzemple, lumo estas elektromagneta ondo kiu, laŭ la kvantumteorio, kreas elektron per sunĉeloj en sunpaneloj, fare de la fotovoltaika fenomeno.
ĉar la tensio de baterio estas supozita konstanta, la stokita energio ne estas transdonita de la fabrikanto per juloj, sed per liverebla elektro-kvanto difinita kiel kapacito de la baterio; malgraŭ ke la SI-unuo de tiu kapacito estas la kulombo (C), tie la alia unuo, kiu estas kutime uzata, estas la amperhoro (simbolo A.h aŭ Ah):
↑angleP. Tixador, M. Deléglise, A. Badel, K. Berger, B. Bellin, J.C. Vallier, A. Allais, C.E. Bruzek. "First tests of a 800 kJ HTS SMES". IEEE Transactions on Applied Superconductivity, Vol. 18 (2), pp. 774-778, June 2008