Hay 9 coloreados uniformes distintos de un teselado cuadrado. Nombrando los colores por índices en los 4 cuadrados alrededor de un vértice, se obtienen las combinaciones siguientes: 1111, 1112(i), 1112(ii), 1122, 1123(i), 1123(ii), 1212, 1213, 1234. Los casos marcados con (i) tienen simetría de reflexión simple, y los marcados con (ii) poseen simetría de reflexión deslizada. Se pueden ver tres en el mismo dominio de simetría como colores reducidos: 1112i de 1213, 1123i de 1234 y 1112ii reducido de 1123ii.
9 coloreados uniformes
1111
1212
1213
1112i
1122
p4m (*442)
p4m (*442)
pmm (*2222)
1234
1123i
1123ii
1112ii
pmm (*2222)
cmm (2*22)
Poliedros y mosaicos relacionados
Este mosaico está relacionado topológicamente como parte de una secuencia de poliedros y mosaicos regulares, que se extiende hasta plano hiperbólico: {4,p}, p=3,4,5...
*n42 mutación de simetría de teselados regulares: {4,n}
Este mosaico también está relacionado topológicamente como parte de la secuencia de poliedros regulares y mosaicos con cuatro caras por vértice, comenzando con octaedro, con Símbolo de Schläfli {n,4} y el diagrama de Coxeter , con n progresando hasta el infinito.
*n42 mutación de simetría de teselados regulares: {n,4}
Dibujando los teselados coloreados como rojo en las caras originales, amarillo en los vértices originales y azul en los bordes originales, las 8 formas son distintas. Sin embargo, al tratar las caras de manera idéntica, solo hay tres formas topológicamente distintas: el teselado cuadrado, el teselado cuadrado truncado y el teselado cuadrado achatado.
Teselados uniformes basados en la simetría de teselados cuadrados
Se pueden hacer otros teselados con cuadriláteros que son topológicamente equivalentes al mosaico cuadrado (con 4 cuadrángulos alrededor de cada vértice).
Los mosaicos isoédricos tienen caras idénticas (face-transitivity) y vertex-transitivity, hay 18 variaciones, con 6 identificadas como triángulos que no se conectan de borde a borde, o como cuadrilátero con dos bordes colineales. La simetría dada asume que todas las caras son del mismo color.[1]
Cuadriláteros degenerados o triángulos sin borde a borde
Isósceles pmg, (22*)
Isósceles pgg, (22×)
Escaleno pgg, (22×)
Escaleno p2, (2222)
Empaquetamiento de círculos
El teselado cuadrado se puede usar como un empaquetamiento de círculos, colocando círculos de igual diámetro en el centro de cada cuadrado. De esta forma, cada círculo está en contacto con otros 4 círculos en el empaquetamiento (número de osculación).[2] La densidad de empaquetamiento tiene una cobertura de π/4=78,54%. Hay 4 colores uniformes de los empaquetamientos circulares.
Apeirógonos complejos regulares relacionados
Hay 3 apeirógonos complejos regulares que comparten los vértices del teselado cuadrado. Los apeirogonos complejos regulares tienen vértices y aristas, donde las aristas pueden contener 2 o más vértices. Los apeirógonos regulares p{q}r están restringidos por: 1/p + 2/q + 1/r = 1. Las aristas tienen p vértices, y las figuras de vértice son r-gonales.[3]