La tablette YBC 7289 a probablement été écrite par un scribe babylonien de la première dynastie, ce qui la situe entre 1900 et 1600 av. J.-C.[4]. La forme et les dimensions de la tablette laissent supposer qu'elle a été écrite, dans le sud de l'Irak actuel, par un apprenti scribe utilisant des valeurs connues issues d'une liste[5]. De telles tablettes, rondes et petites (entre 8 et 12 cm en général) tenaient aisément dans la main.
Elle a été achetée vers 1912 et publiée pour la première fois en 1945. Elle est actuellement conservée à l'université Yale.
Il s'agit de l'un des premiers objets mathématiques connu, et de l'une des plus anciennes traces d'une pensée scientifique[4].
Analyse
Les trois nombres inscrits sur la tablette sont liés par la relation : . Ce qui peut se traduire par : la longueur de la diagonale d'un carré de côté 30 s'obtient en multipliant 30 par 1,414 212 96, énoncé général, même s'il est donné dans un cas particulier[6].
La précision de cette valeur de la racine carrée de 2 est exceptionnelle, puisque proche du millionième. Les évaluations antérieures donnaient la suite « 1 ; 25 », ce qui représente environ 1,4167 (précision au millième)[7]. Cette précision n'a peut-être été dépassée que 2 500 ans plus tard, par l'Indien Govindashwamin ; le plus étonnant est que la valeur calculée au millième est largement suffisante pour toutes les applications pratiques (comme par exemple l'architecture)[8].
La tablette YBC 7243, qui donne des listes de nombres, contient, dans sa dixième ligne[9] :
« 1 24 51 10, la diagonale du carré »
sous-entendu : il faut multiplier le côté du carré par 1 24 51 10 pour obtenir sa diagonale. La tablette YBC 7289 consistait peut-être à calculer la diagonale d'un carré de côté 30 à partir d'une liste semblable à celle de YBC 7243.
Pourquoi 30 ?
Le système de numération babylonien ne permet pas de noter la valeur exacte d'un nombre, mais seulement celle-ci à un exposant 60 près[10]. Ainsi peut-il signifier 30 comme 30×60, 30×60² ou 30/60, c'est-à-dire 1/2, etc.
Une hypothèse à première vue moins arbitraire[11] est que « 30 » représente le nombre 1/2. Le nombre représenterait alors √2/2, soit 1/√2. Ainsi, la tablette donnerait, en valeurs approchées, un couple de nombres réciproques correspondant aux deux nombres inverses l'un de l'autre : √2 et √2/2. Cette hypothèse est confortée par le fait que des couples de nombres réciproques apparaissent souvent dans les tablettes mathématiques babyloniennes : les scribes, plutôt que de diviser, multipliaient par l'inverse et de nombreuses tablettes contenant des listes de couples de nombres réciproques ont été retrouvées[11].
Mais David Fowler et Eleanor Robson voient plutôt dans cette tablette le calcul d'un élève sur la diagonale d'un carré de côté 30 ninda (un ninda vaut environ 6 mètres[12]), le 30 provenant cette fois du fait que le carré étudié serait un carré classique, intervenant dans de nombreux problèmes, inscrit dans un carré de côté 1 UŠ, c'est-à-dire 60 ninda. Le premier nombre sur la diagonale serait alors un coefficient multiplicateur (approximation de √2) recopié à partir d'une table et le second une longueur exprimée en ninda[13].
Calcul
La tablette ne donne aucune indication à propos de la méthode utilisée pour obtenir cette approximation. Une hypothèse est que celle-ci a été obtenue par une méthode itérative mathématiquement équivalente à celle connue plus tard sous le nom de méthode de Héron. Fowler et Robson ont proposé une reconstitution[14] s'appuyant d'une part sur certaines procédures calculatoires décrites dans d'autres tablettes, d'autre part sur des justifications géométriques par « coupé-collé » d'aires dont, à la suite des travaux de Jens Hoyrup, beaucoup d'historiens pensent qu'elles sous-tendent les calculs des mathématiques de l'époque[15].
Traduite algébriquement la procédure décrite par Fowler et Robson s'appuie sur le fait que si a est une approximation de √N, alors a+1/2(N − a2)/a en est une meilleure[16]. Si on part de l'approximation 3/2 pour √2, on aboutit ainsi à l'assez bonne approximation 17/12, 1;25 en sexagésimal, qui est aussi présente dans les tablettes paléo-babyloniennes[17].
Il n'existe pas de témoignage d'une itération de ce processus[18]. Pour le calcul de la division les mathématiques mésopotamiennes procèdent par multiplication par l'inverse, à l'aide de tables de réciproques. Pour la seconde itération se pose le problème de la division par 17/12 qui n'est pas régulier : son inverse n'a pas d'écriture finie en base 60[19]. Une possibilité est d'utiliser une approximation de l'inverse à quatre places sexagésimales, et cela conduit, au prix d'une approximation supplémentaire, à la valeur de la tablette YBC 7289[20],[21].
Par ailleurs la procédure, bien que mathématiquement équivalente à la méthode de Héron (a ↦ 1/2(a +N/a)), est plus pénible sur le plan calculatoire[18].
↑Eleanor Robson, «Mesopotamian mathematics», in Victor J. Katz, The mathematics of Egypt, Mesopotamia, China, India, and Islam, A sourcebook, Princeton University Press, 2007, p. 143
↑Cela ressemble à la notation de nos calculatrices contemporaines avec mantisse et exposant. Les Babyloniens ne retenaient que la mantisse à condition qu'elle ne se termine pas par un zéro et ne notaient pas l'exposant. En fait, vue d'un œil moderne, nous dirions que les Babyloniens calculaient en virgule flottante.
↑Christiane Proust, présentation du livre de Høyrup, 2002 Lenghts, Widths, Surfaces. A portrait of Old Babylonian algebra and its kin, en ligne sur le site educmath.
↑Ceci se justifie géométriquement par les méthodes supposées connues à l'époque, et correspond à des procédures mises en œuvre sur d'autres tablettes, voir Fowler et Robson 1998, p. 370-374.
↑On connaît cependant peu de tables de réciproques approchées de nombres irréguliers et celles-ci ne contiennent pas la réciproque correspondant à l'inverse de 1;25, voir Fowler et Robson 1998, p. 375.
Étude complète de la tablette, mise en contexte historique et explications probables des méthodes utilisées à l'époque pour obtenir la valeur approchée de √2 utilisée dans YBC 7289.