En matemáticas, o conxunto dos números reais (denotado por ) inclúe tanto aos números racionais (positivos, negativos e o cero) como aos números irracionais;[1] e noutro enfoque, transcendentes e alxébricos. Os irracionais e os transcendentes[2] (1970) non se poden expresar mediante unha fracción de dous enteiros con denominador non nulo; teñen infinitas cifras decimais aperiódicas, tales como: √5, π, o número real log2, cuxa transcendencia foi enunciada por Euler no século XVIII.[2]
Os números reais poden ser descritos e construídos de varias formas, algunhas simples aínda que carentes do rigor necesario para os propósitos formais de matemáticas e outras máis complexas pero co rigor necesario para o traballo matemático formal.
Durante os séculos XVI e XVII o cálculo avanzou moito aínda que carecía dunha base rigorosa, debido a que no momento prescindían do rigor e fundamento lóxico, tan esixente nos enfoques teóricos da actualidade, e usábanse expresións como «pequeno», «límite», «achégase» sen unha definición precisa. Isto levou a unha serie de paradoxos e problemas lóxicos que fixeron evidente a necesidade de crear unha base rigorosa para a matemática, a cal consistiu de definicións formais e rigorosas (aínda que certamente técnicas) do concepto de número real.[3] Nunha sección posterior describiranse dúas das definicións precisas máis usuais actualmente: clases de equivalencia de sucesións de Cauchy de números racionais e cortaduras de Dedekind.
Notas
↑Arias Cabezas, José María; Maza Sáez, Ildefonso (2008). "Aritmética y Álgebra". En Carmona Rodríguez, Manuel; Díaz Fernández, Francisco Javier. Matemáticas 1. Madrid: Grupo Editorial Bruño, Sociedad Limitada. p. 13. ISBN9788421659854.|data-acceso= require |url= (Axuda)
↑ 2,02,1Manual de matemáticas (1985) Tsipkin, Editorial Mir, Moscú, tradución de Shapovalova; pg. 86
↑Anglin, W. S. (1991). Mathematics: A concise history and philosophy. Springer. ISBN3-540-94280-7.